scholarly journals Mitigating the Piston Effect in High-Speed Hyperloop Transportation: A Study on the Use of Aerofoils

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 464
Author(s):  
Aditya Bose ◽  
Vimal K. Viswanathan

The Hyperloop is a concept for the high-speed ground transportation of passengers traveling in pods at transonic speeds in a partially evacuated tube. It consists of a low-pressure tube with capsules traveling at both low and high speeds throughout the length of the tube. When a high-speed system travels through a low-pressure tube with a constrained diameter such as in the case of the Hyperloop, it becomes an aerodynamically challenging problem. Airflow tends to get choked at the constrained areas around the pod, creating a high-pressure region at the front of the pod, a phenomenon referred to as the “piston effect.” Papers exploring potential solutions for the piston effect are scarce. In this study, using the Reynolds-Average Navier–Stokes (RANS) technique for three-dimensional computational analysis, the aerodynamic performance of a Hyperloop pod inside a vacuum tube is studied. Further, aerofoil-shaped fins are added to the aeroshell as a potential way to mitigate the piston effect. The results show that the addition of fins helps in reducing the drag and eddy currents while providing a positive lift to the pod. Further, these fins are found to be effective in reducing the pressure build-up at the front of the pod.

Author(s):  
Z Kok ◽  
J T Duffy ◽  
S Chai ◽  
Y Jin

The demand to increase port throughput has driven container ships to travel relatively fast in shallow water whilst avoiding grounding and hence, there is need for more accurate high-speed squat predictions. A study has been undertaken to determine the most suitable method to predict container ship squat when travelling at relatively high speeds (Frh ≥ 0.5) in finite water depth (1.1 ≤ h/T ≤ 1.3). The accuracy of two novel self-propelled URANS CFD squat model are compared with that of readily available empirical squat prediction formulae. Comparison of the CFD and empirical predictions with benchmark data demonstrates that for very low water depth (h/T < 1.14) and when Frh < 0.46; Barass II (1979), ICORELS (1980), and Millward’s (1992) formulae have the best correlation with benchmark data for all cases investigated. However, at relatively high speeds (Frh ≥ 0.5) which is achievable in deeper waters (h/T ≥ 1.14), most of the empirical formulae severely underestimated squat (7-49%) whereas the quasi-static CFD model presented has the best correlation. The changes in wave patterns and effective wake fraction with respect to h/T are also presented.


2020 ◽  
Vol 162 (A2) ◽  
Author(s):  
Z Kok ◽  
J T Duffy ◽  
S Chai ◽  
Y Jin

The demand to increase port throughput has driven container ships to travel relatively fast in shallow water whilst avoiding grounding and hence, there is need for more accurate high-speed squat predictions. A study has been undertaken to determine the most suitable method to predict container ship squat when travelling at relatively high speeds (Frh ≥ 0.5) in finite water depth (1.1 ≤ h/T ≤ 1.3). The accuracy of two novel self-propelled URANS CFD squat model are compared with that of readily available empirical squat prediction formulae. Comparison of the CFD and empirical predictions with benchmark data demonstrates that for very low water depth (h/T < 1.14) and when Frh < 0.46; Barass II (1979), ICORELS (1980), and Millward’s (1992) formulae have the best correlation with benchmark data for all cases investigated. However, at relatively high speeds (Frh ≥ 0.5) which is achievable in deeper waters (h/T ≥ 1.14), most of the empirical formulae severely underestimated squat (7-49%) whereas the quasi-static CFD model presented has the best correlation. The changes in wave patterns and effective wake fraction with respect to h/T are also presented.


2020 ◽  
Vol 8 (12) ◽  
pp. 975
Author(s):  
Cong Sun ◽  
Chunyu Guo ◽  
Chao Wang ◽  
Lianzhou Wang ◽  
Jianfeng Lin

The interactions between the main hull and demi-hull of trimarans have been arousing increasing attention, and detailed circumferential flow fields greatly influence trimaran research. In this research, the unsteady wake flow field of a trimaran was obtained by Reynolds-Averaged Navier-Stokes (RANS) equations on the basis of the viscous flow principles with consideration of the heaving and pitching of the trimaran. Then, we designed an experimental method based on particle-image velocimetry (PIV) and obtained a detailed flow field between the main hull and demi-hull of the trimaran. A trimaran model with one demi-hull made of polycarbonate material with 90% light transmission rate and a refractive index 1.58 (close to that of water 1.33) was manufactured as the experiment sample. Using polycarbonate material, the laser-sheet light-source transmission and high-speed camera recording problems were effectively rectified. Moreover, a nonstandard calibration was added into the PIV flow field measurement system. Then, we established an inverse three-dimensional (3D) distortion coordinate system and obtained the corresponding coordinates by using optics calculations. Further, the PIV system spatial mapping was corrected, and the real flow field was obtained. The simulation results were highly consistent with the experimental data, which showed the methods established in this study provided a strong reference for obtaining the detailed flow field information between the main hull and demi-hull of trimarans.


Author(s):  
Filippo Rubechini ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Stefano Cecchi ◽  
Federico Dacca`

A three-dimensional, multistage, Navier-Stokes solver is applied to the numerical investigation of a four stage low-pressure steam turbine. The thermodynamic behavior of the wet steam is reproduced by adopting a real-gas model, based on the use of gas property tables. Geometrical features and flow-path details consistent with the actual turbine geometry, such as cavity purge flows, shroud leakage flows and partspan snubbers, are accounted for, and their impact on the turbine performance is discussed. These details are included in the analysis using simple models, which prevent a considerable growth of the computational cost and make the overall procedure attractive as a design tool for industrial purposes. Shroud leakage flows are modeled by means of suitable endwall boundary conditions, based on coupled sources and sinks, while body forces are applied to simulate the presence of the damping wires on the blades. In this work a detailed description of these models is provided, and the results of computations are compared with experimental measurements.


Author(s):  
Y Wang ◽  
S Komori

A pressure-based finite volume procedure developed previously for incompressible flows is extended to predict the three-dimensional compressible flow within a centrifugal impeller. In this procedure, the general curvilinear coordinate system is used and the collocated grid arrangement is adopted. Mass-averaging is used to close the instantaneous Navier-Stokes equations. The covariant velocity components are used as the main variables for the momentum equations, making the pressure-velocity coupling easier. The procedure is successfully applied to predict various compressible flows from subsonic to supersonic. With the aid of the k-ɛ turbulence model, the flow details within a centrifugal impeller are obtained using the present procedure. Predicted distributions of the meridional velocity and the static pressure are reasonable. Calculated radial velocities and flow angles are favourably compared with the measurements at the exit of the impeller.


2013 ◽  
Vol 561 ◽  
pp. 454-459 ◽  
Author(s):  
Qing Ling Li ◽  
Wen Guang Jia ◽  
Chen Guang Dong ◽  
Rui Xiang Duan

According to the three-dimensional mathematical model and physical model of evacuated tube transportation(ETT) system, thermal-pressure coupling equations based on viscous fluid Navier-Stokes equation and k- ε turbulence model are established for the first time. The numerical simulation is carried out to investigate the inherent laws for different blockage ratios of ETT system. The simulation results show that: when the speed of the train and the pressure of the system are constants, in the temperature field, the aerodynamic heating is getting more as the blockage ratio increases, and its trend grows exponential. In the pressure field, with the increase of the blockage ratio, the stagnation pressure is gradually increased, but the growth is getting slower; vortex region pressure reduces gradually, and has accelerated the decreasing trend; the pressure difference between the head and the end of the train is linear increment.


1987 ◽  
Vol 109 (1) ◽  
pp. 71-76 ◽  
Author(s):  
J. O. Medwell ◽  
D. T. Gethin ◽  
C. Taylor

The performance of a cylindrical bore bearing fed by two axial grooves orthogonal to the load line is analyzed by solving the Navier-Stokes equations using the finite element method. This produces detailed information about the three-dimensional velocity and pressure field within the hydrodynamic film. It is also shown that the method may be applied to long bearing geometries where recirculatory flows occur and in which the governing equations are elliptic. As expected the analysis confirms that lubricant inertia does not affect bearing performance significantly.


2012 ◽  
Vol 253-255 ◽  
pp. 2035-2040
Author(s):  
Ye Bo Liu ◽  
Zhi Ming Liu

Numerical simulations were carried out to investigate the air flow and pressure distributions beneath high speed trains, based on the three-dimensional Reynolds-averaged Navier-Stokes equations with the SST k-ω two-equation turbulence model. The simulation scenarios were of the high speed train, the CRH2, running in the open air at four different speeds: 200km/h, 250km/h, 300km/h and 350km/h. The results show that, the highest area of pressure is located at the front underbody part of the train whist the pressure for rest of the train is relatively small. Increasing speed does not visibly increase the pressure coefficient, indicating that the pressure increases with the square of the operational speed.


Author(s):  
Mark R. Anderson ◽  
Daryl L. Bonhaus

Through-flow solvers have historically played a very prominent role in the design and analysis of axial turbomachinery. While three-dimensional, Full Navier-Stokes (FNS) CFD is taking an increasing larger role, quasi-3D through-flow methods are still widely used. Automated optimization techniques that search over a wide design space, involving many possible variables, are particularly suitable for the computationally efficient through-flow solver. Pressure-based methods derived from CFD solution techniques have gradually replaced older streamline curvature methods, due to their ability to capture flow across a wide range of Mach numbers, particularly the transonic and supersonic regimes. The through-flow approach allows for the solution of the three-dimensional problem with the computational efficiency of a two-dimensional solution. Since the losses are explicitly calculated through empirically based models, the need for detailed grid resolution to capture tiny flow entities (such as wakes and boundary layers) is also greatly reduced. The combined savings can result in computational costs as much as two orders of magnitude lower than full 3D CFD methods. A state-of-the-art through-flow solver has several features that are crucial in the design process. One of these is the ability to run in both a design and an analysis mode. Also important, is the ability to generate solutions where critical components are solved using 3D FNS, while others are run using a through-flow method. Other desirable features in a through-flow solver are: an advanced equation of state, injection and extraction ability, the handling of arbitrary (non-axial) shapes, and a link to a capable geometry generation engine. Through-flow solvers represent a unique mix of higher order numerical methods (increasingly CFD-based) coupled with empirically derived models (generally meanline based). The combination of these two methods in one solver creates a particularly challenging programming problem. This paper details the techniques required to effectively generate through-flow solutions. Special attention is given to an improved off-design loss model for compressors, as well as a transonic loss model needed for high-speed compressor and turbine flows. Validation with recognized test data along with corresponding 3D FNS CFD results are presented.


1996 ◽  
Vol 316 ◽  
pp. 53-72 ◽  
Author(s):  
Bernard Zappoli ◽  
Sakir Amiroudine ◽  
Pierre Carles ◽  
Jalil Ouazzani

The mechanisms of heat and mass transport in a side-heated square cavity filled with a near-critical fluid are explored, with special emphasis on the interplay between buoyancy-driven convection and the Piston Effect. The Navier–Stokes equations for a near-critical van der Waals gas are solved numerically by means of an acoustically filtered, finite-volume method. The results have revealed some striking behaviour compared with that obtained for normally compressible gases: (i) heat equilibration is still achieved rapidly, as under zero-g conditions, by the Piston Effect before convection has time to enhance heat transport; (ii) mass equilibration is achieved on a much longer time scale by quasi-isothermal buoyant convection; (iii) due to the very high compressibility, a stagnation-point effect similar to that encountered in high-speed flows provokes an overheating of the upper wall; and (iv) a significant difference to the convective single-roll pattern generated under the same conditions in normal CO2 is found, in the form of a double-roll convective structure.


Sign in / Sign up

Export Citation Format

Share Document