scholarly journals Penalty Electricity Price-Based Optimal Control for Distribution Networks

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1806
Author(s):  
Qingle Pang ◽  
Lin Ye ◽  
Houlei Gao ◽  
Xinian Li ◽  
Yang Zheng ◽  
...  

With the integration of large-scale renewable energy and the implementation of demand response, the complexity and volatility of distribution network operations are increasing. This has led to the inconsistency between the actual net power consumption of power users and their optimal dispatching orders. As a result, the distribution networks cannot operate according to their optimization strategy. The study proposed a penalty electricity price mechanism and the optimal control method based on this electricity price mechanism for distribution networks. First, we established the structure of the distribution network optimal control system. Second, aiming at the actual net power consumption (including power generation and consumption) of power users tracking their dispatching orders, we established a penalty electricity price mechanism. Third, we designed an optimal control strategy and process of distribution networks based on the penalty electricity price. Finally, we verified the proposed method by taking the IEEE-33 node system as an example. The verification results showed that the penalty electricity price could effectively limit the net power consumption fluctuations of power users to achieve optimal control of distribution networks.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Mohamed Elhia ◽  
Mostafa Rachik ◽  
Elhabib Benlahmar

We will investigate the optimal control strategy of an SIR epidemic model with time delay in state and control variables. We use a vaccination program to minimize the number of susceptible and infected individuals and to maximize the number of recovered individuals. Existence for the optimal control is established; Pontryagin’s maximum principle is used to characterize this optimal control, and the optimality system is solved by a discretization method based on the forward and backward difference approximations. The numerical simulation is carried out using data regarding the course of influenza A (H1N1) in Morocco. The obtained results confirm the performance of the optimization strategy.


2018 ◽  
Vol 20 (4) ◽  
pp. 417-429 ◽  
Author(s):  
Satyabrata Dash ◽  
Sukanta Dey ◽  
Deepak Joshi ◽  
Gaurav Trivedi

Purpose The purpose of this paper is to demonstrate the application of river formation dynamics to size the widths of power distribution network for very large-scale integration designs so that the wire area required by power rails is minimized. The area minimization problem is transformed into a single objective optimization problem subject to various design constraints, such as IR drop and electromigration constraints. Design/methodology/approach The minimization process is carried out using river formation dynamics heuristic. The random probabilistic search strategy of river formation dynamics heuristic is used to advance through stringent design requirements to minimize the wire area of an over-designed power distribution network. Findings A number of experiments are performed on several power distribution benchmarks to demonstrate the effectiveness of river formation dynamics heuristic. It is observed that the river formation dynamics heuristic outperforms other standard optimization techniques in most cases, and a power distribution network having 16 million nodes is successfully designed for optimal wire area using river formation dynamics. Originality/value Although many research works are presented in the literature to minimize wire area of power distribution network, these research works convey little idea on optimizing very large-scale power distribution networks (i.e. networks having more than four million nodes) using an automated environment. The originality in this research is the illustration of an automated environment equipped with an efficient optimization technique based on random probabilistic movement of water drops in solving very large-scale power distribution networks without sacrificing accuracy and additional computational cost. Based on the computation of river formation dynamics, the knowledge of minimum area bounded by optimum IR drop value can be of significant advantage in reduction of routable space and in system performance improvement.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Abderrahim Labzai ◽  
Omar Balatif ◽  
Mostafa Rachik

The aim of this paper is to study and investigate the optimal control strategy of a discrete mathematical model of smoking with specific saturated incidence rate. The population that we are going to study is divided into five compartments: potential smokers, light smokers, heavy smokers, temporary quitters of smoking, and permanent quitters of smoking. Our objective is to find the best strategy to reduce the number of light smokers, heavy smokers, and temporary quitters of smoking. We use three control strategies which are awareness programs through media and education, treatment, and psychological support with follow-up. Pontryagins maximum principle in discrete time is used to characterize the optimal controls. The numerical simulation is carried out using MATLAB. Consequently, the obtained results confirm the performance of the optimization strategy.


2020 ◽  
Vol 12 (21) ◽  
pp. 9247
Author(s):  
Mingyuan Zhang ◽  
Juan Zhang ◽  
Gang Li ◽  
Yuan Zhao

Water distribution networks (WDNs), an interconnected collection of hydraulic control elements, are susceptible to a small disturbance that may induce unbalancing flows within a WDN and trigger large-scale losses and secondary failures. Identifying critical regions in a water distribution network (WDN) to formulate a scientific reinforcement strategy is significant for improving the resilience when network disruption occurs. This paper proposes a framework that identifies critical regions within WDNs, based on the three metrics that integrate the characteristics of WDNs with an external service function; the criticality of urban function zones, nodal supply water level and water shortage. Then, the identified critical regions are reinforced to minimize service loss due to disruptions. The framework was applied for a WDN in Dalian, China, as a case study. The results showed the framework efficiently identified critical regions required for effective WDN reinforcements. In addition, this study shows that the attributes of urban function zones play an important role in the distribution of water shortage and service loss of each region.


2009 ◽  
Vol 12 (4) ◽  
pp. 547-558 ◽  
Author(s):  
Yan Bao ◽  
Cheng Huang ◽  
Dai Zhou ◽  
Yao-Jun Zhao

In this paper, a semi-active optimal control strategy for spatial reticulated structures (SRS) with MR dampers subjected to dynamic actions was proposed. The motion equation of SRS embedded with MR dampers was set up. The performance function of the optimal control strategy including both the structural responses and the control efforts was constituted for the optimization of feedback gain and MR damper placement in SRS, and an integrated method of genetic-gradient based algorithm was developed to solve this optimization problem. The clipped-optimal semi-active control strategy in the conjunction of velocity output feedback was applied to compute the desired control force from the MR dampers. Finally, a numerical example of SRS dealing with optimal placement of MR dampers and feedback gains of control system demonstrates the validity of the present semi-active optimal control strategy.


2014 ◽  
Vol 14 (5) ◽  
pp. 795-803 ◽  
Author(s):  
R. Sarrate ◽  
J. Blesa ◽  
F. Nejjari ◽  
J. Quevedo

The performance of a leak detection and location algorithm depends on the set of measurements that are available in the network. This work presents an optimization strategy that maximizes the leak diagnosability performance of the network. The goal is to characterize and determine a sensor configuration that guarantees a maximum degree of diagnosability while the sensor configuration cost satisfies a budgetary constraint. To efficiently handle the complexity of the distribution network an efficient branch and bound search strategy based on a structural model is used. However, in order to reduce even more the size and the complexity of the problem the present work proposes to combine this methodology with clustering techniques. The strategy developed in this work is successfully applied to determine the optimal set of pressure sensors that should be installed in a District Metered Area in the Barcelona water distribution network.


2012 ◽  
Vol 433-440 ◽  
pp. 1802-1810 ◽  
Author(s):  
Lin Guan ◽  
Hao Hao Wang ◽  
Sheng Min Qiu

A new algorithm as well as the software design for large-scale distribution network reliability assessment is proposed in this paper. The algorithm, based on fault traversal algorithm, obtains network information from the GIS. The structure of distribution network data storage formats is described, facilitating automatic output of the feeders’ topological and corresponding information from the GIS. Also the judgment of load transfer is discussed and the method for reliability assessment introduced in this paper. Moreover, The impact of the scheduled outage is taken into account in the assessment model, making the results more in accordance with the actual situation. Test Cases show that the proposed method features good accuracy and effectiveness when applied to the reliability assessment of large-scale distribution networks.


2014 ◽  
Vol 700 ◽  
pp. 103-110
Author(s):  
Lei Yu ◽  
Tian Yang Zhao ◽  
Xu Wu ◽  
Jian Hua Zhang

With recent development of technology and management in power market and equipment, more and more distributed generation (DG) is embedded in the distribution network. However the approach of connecting DG in most cases is based on a so-called ‘fit and forget’ policy and the capacity of DG is limited rigidly by distribution system operator to avoid the negative effects of high level penetration. New management technologies have been proposed to handle the integration of DGs in the distribution networks. In this review, the micro grid (MG) was treated as the local control method to coordinate DGs within a small area of distribution network. And the active distribution network (AND) was treated as the global control mechanism to actively manage DGs, MGs and other equipment. The operation framework of ADN was firstly introduced. Then based on the static and dynamic models of DGs and MGs, impacts of DGs and MGs on the ADN are surveyed from power quality, stability to the operation. Finally, the conclusion and suggestion is given in this paper.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261093
Author(s):  
Wentao Huang ◽  
Jinman Yu ◽  
Zhijun Yuan ◽  
Zhongwei He ◽  
Jun He ◽  
...  

With the construction and development of ultra-high voltage (UHV) power grids, large-scale, long-distance power transmission has become common. A failure of the connecting line between the sending-end power grid and the receiving-end power grid will cause a large-scale power shortage and a frequency drop in the receiving-end power grid, which can result in the frequency collapse. Presently, under-frequency load shedding (UFLS) is adopted for solving the frequency control problem in emergency under-frequency conditions, which can easily cause large load losses. In this context, a frequency coordination optimal control strategy is proposed, which combines the mode transition of pumped storage units with UFLS to deal with emergency under-frequency problems. First, a mathematical model of the frequency dynamic response is established, which combines the mode transition of pumped storage units with UFLS based on a single-machine equivalent model. Then, an optimal model of the minimal area of the power system’s operation frequency trajectory is introduced, yielding the optimal frequency trajectory, and is used for obtaining the action frequency of the joint control strategy. A simulated annealing algorithm based on the perturbation analysis is proposed for solving the optimal model, and the optimal action frequency is obtained that satisfies the transient frequency offset safety constraint of the power system. Thus, the joint optimal control of the mode transition of the pumped storage units and UFLS is realized. Finally, the EPRI-36 bus system and China’s actual power grid are considered, for demonstrating the efficiency of the proposed strategy.


Sign in / Sign up

Export Citation Format

Share Document