scholarly journals Households’ Electricity Consumption in Hungarian Urban Areas

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2899
Author(s):  
Ferenc Bakó ◽  
Judit Berkes ◽  
Cecília Szigeti

The aim of this study is to examine the factors influencing the electricity consumption of urban households and to prove these with statistically significant results. The study includes 46 small and medium-sized towns in Hungary. The methodology of the study is mainly provided by a model that can be used for this purpose; however, the results obtained with the traditional regression method are compared with the results of another, more complex estimation method, the artificial neural network, which has the advantage of being able to use different types of models. The focus of our article is on methodological alignment, not necessarily the discovery of new results. Certain demographic characteristics significantly determine the energy demand of a household sector in a municipality. In this case, as the ratio of people aged 60 or over within a city rises by 1%, the urban household average energy consumption decreases by 61 kilowatt hours, and when it rises by 1%, the amount of pollutants expelled from urban households’ average energy consumption may decrease by 22.8745 kg. The research area of our paper was greatly influenced by the availability of the statistical data. The results can be used in the planning of urban developments.

Author(s):  
Berhanu Sugebo

Biomass energy is one of the important alternative sources of energy because it is renewable, cheaper, readily available and environmentally friendly.In Ethiopia, the lack of access to modern energy services that are clean, efficient and environmentally sustainable is a critical limitation of economic growth and sustainable development.The main aim of the present study was to assess biomass potential and energy potential from chat,sugarcane and coffee husk in Wondo Genet District and to forecast biomass and energy potential of the District for the coming ten years.Secondary data from agricultural office of Wondo Geneet District were used as data source of yearly available biomass potential and also purposively 60 electric city user households from the District were interviewed on their amount of energy consumption per month. Biomass potential forecasting for the next ten years was done using empirical formula. In the District in 2019 the total area covered by chat, coffee plant and sugarcane was 5414 hectares and from crop production 7255.03tons per year of residue was produced.The amount of energy produced from chat waste, coffee husk and sugarcane waste was 46397.62 GJ/year. Yearly growth rate of agricultural residues of chat,sugarcane and coffee husk is 2.7%, 2.3% and 1.4% per year respectively and after ten years residues will be grown 9224.602 tons/year.In the year of 2019,the average energy consumption of households in the District was 6KWh/day and total energy consumption of households in the Distric was 2040.22152GWh/year.The energy demand for households after ten years will be grown 472.021009979GJ/year. KEY WORDS: Biomass, Chat, coffee husk, energy


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 442
Author(s):  
Xiaoyue Zhu ◽  
Bo Gao ◽  
Xudong Yang ◽  
Zhong Yu ◽  
Ji Ni

In China, a surging urbanization highlights the significance of building energy conservation. However, most building energy-saving schemes are designed solely in compliance with prescriptive codes and lack consideration of the local situations, resulting in an unsatisfactory effect and a waste of funds. Moreover, the actual effect of the design has yet to be thoroughly verified through field tests. In this study, a method of modifying conventional building energy-saving design based on research into the local climate and residents’ living habits was proposed, and residential buildings in Panzhihua, China were selected for trial. Further, the modification scheme was implemented in an actual project with its effect verified by field tests. Research grasps the precise climate features of Panzhihua, which was previously not provided, and concludes that Panzhihua is a hot summer and warm winter zone. Accordingly, the original internal insulation was canceled, and the shading performance of the windows was strengthened instead. Test results suggest that the consequent change of SET* does not exceed 0.5 °C, whereas variations in the energy consumption depend on the room orientation. For rooms receiving less solar radiation, the average energy consumption increased by approximately 20%, whereas for rooms with a severe western exposure, the average energy consumption decreased by approximately 11%. On the other hand, the cost savings of removing the insulation layer are estimated at 177 million RMB (1 USD ≈ 6.5 RMB) per year. In conclusion, the research-based modification method proposed in this study can be an effective tool for improving building energy efficiency adapted to local conditions.


2021 ◽  
Vol 13 (3) ◽  
pp. 1257
Author(s):  
Luis Godoy-Vaca ◽  
E. Catalina Vallejo-Coral ◽  
Javier Martínez-Gómez ◽  
Marco Orozco ◽  
Geovanna Villacreses

This work aims to estimate the expected hours of Predicted Medium Vote (PMV) thermal comfort in Ecuadorian social housing houses applying energy simulations with Phase Change Materials (PCMs) for very hot-humid climates. First, a novel methodology for characterizing three different types of social housing is presented based on a space-time analysis of the electricity consumption in a residential complex. Next, the increase in energy demand under climate influences is analyzed. Moreover, with the goal of enlarging the time of thermal comfort inside the houses, the most suitable PCM for them is determined. This paper includes both simulations and comparisons of thermal behavior by means of the PMV methodology of four types of PCMs selected. From the performed energy simulations, the results show that changing the deck and using RT25-RT30 in walls, it is possible to increase the duration of thermal comfort in at least one of the three analyzed houses. The applied PCM showed 46% of comfortable hours and a reduction of 937 h in which the thermal sensation varies from “very hot” to “hot”. Additionally, the usage time of air conditioning decreases, assuring the thermal comfort for the inhabitants during a higher number of hours per day.


2017 ◽  
Vol 9 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Maryam Hamlehdar ◽  
Alireza Aslani

Abstract Today, the fossil fuels have dominant share of energy supply in order to respond to the high energy demand in the world. Norway is one of the countries with rich sources of fossil fuels and renewable energy sources. The current work is to investigate on the status of energy demand in Norway. First, energy and electricity consumption in various sectors, including industrial, residential are calculated. Then, energy demand in Norway is forecasted by using available tools. After that, the relationship between energy consumption in Norway with Basic economics parameters such as GDP, population and industry growth rate has determined by using linear regression model. Finally, the regression result shows a low correlation between variables.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7823
Author(s):  
Hyunchong Cho ◽  
Seungmin Oh ◽  
Yongje Shin ◽  
Euisin Lee

In WSNs, multipath is well-known as a method to improve the reliability of packet delivery by making multiple routes from a source node to a destination node. To improve reliability and load-balancing, it is important to ensure that disjoint characteristics of multipath do not use same nodes during path generation. However, when multipath studies encounter a hole area from which is hard to transmit data packets, they have a problem with breaking the disjoint features of multipath. Although existing studies propose various strategies to bypass hole areas, they have side effects that significantly accelerate energy consumption and packet transmission delay. Therefore, to retain the disjoint feature of multipath, we propose a new scheme that can reduce delay and energy consumption for a node near a hole area using two approaches—global joint avoidance and local avoidance. This scheme uses global joint avoidance to generate a new path centered on a hole area and effectively bypasses the hole area. This scheme also uses local joint avoidance that does not select the same nodes during new path generation using a marking process. In simulations, the proposed scheme has an average 30% improvement in terms of average energy consumption and delay time compared to other studies.


2018 ◽  
Author(s):  
Sara Torabi Moghadam ◽  
Silvia Coccolo ◽  
Guglielmina Mutani ◽  
Patrizia Lombardi ◽  
Jean Louis Scartezzini ◽  
...  

The spatial visualization is a very useful tool to help decision-makers in the urban planning process to create future energy transition strategies, implementing energy efficiency and renewable energy technologies in the context of sustainable cities. Statistical methods are often used to understand the driving parameters of energy consumption but rarely used to evaluate future urban renovation scenarios. Simulating whole cities using energy demand softwares can be very extensive in terms of computer resources and data collection. A new methodology, using city archetypes is proposed, here, to simulate the energy consumption of urban areas including urban energy planning scenarios. The objective of this paper is to present an innovative solution for the computation and visualization of energy saving at the city scale.The energy demand of cities, as well as the micro-climatic conditions, are calculated by using a simplified 3D model designed as function of the city urban geometrical and physical characteristics. Data are extracted from a GIS database that was used in a previous study. In this paper, we showed how the number of buildings to be simulated can be drastically reduced without affecting the accuracy of the results. This model is then used to evaluate the influence of two set of renovation solutions. The energy consumption are then integrated back in the GIS to identify the areas in the city where refurbishment works are needed more rapidly. The city of Settimo Torinese (Italy) is used as a demonstrator for the proposed methodology, which can be applied to all cities worldwide with limited amount of information.


2021 ◽  
Vol 905 (1) ◽  
pp. 012077
Author(s):  
A D P M Larasati ◽  
Darsono ◽  
S Marwanti

Abstract Ngawi is the sixth paddy producer in Indonesia and certainly has an influence on the food security of paddy farm households. This study aimed to analyze the proportion of food expenditure (PFE), energy and protein consumption, the relationship between food expenditure and energy consumption, and the condition of food security. The basic method used descriptive analytic. The number of respondents based on the slovin formula was 87 households. The sample selection used stratified random sampling. The data analysis method used correlation with SPSS 22 and cross indicator between PFE and energy consumption level. The results showed that the average of PFE was 58.81%. The average energy consumption was 4,272.2 kcal/household/day with an energy consumption level of 81.93% while the average protein consumption was 122.1 grams/household/day lower than the average household RDA consumption. Food expenditure had a significant relationship to energy consumption with a correlation coefficient of 0.925 including a very strong and unidirectional relationship. The contribution of household food security conditions were 28.7% secure; 32.2% vulnerable; 10.3% less secure; 28.8% insecure.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1006
Author(s):  
Jing Wang ◽  
Yan Zhang ◽  
Libo Wu ◽  
Weichun Ma ◽  
Limin Chen

About 75% energy demand and emissions all concentrate in urban areas, especially in the metropolises, placing a heavy burden on both the energy supply system and the environment system. To explore low emission pathways and provide policy recommendations for the Shanghai energy system and the environmental system to reach the carbon dioxide (CO2) peak by 2030 and attain emission reduction targets for local air pollutants (LAPs), a regional energy–environment optimization model was developed in this study, considering system costs, socio-economic development and technology. To verify the reliability of the model simulation and evaluate the model risk, a historical scenario was defined to calculate the emissions for 2004–2014, and the data were compared with the bottom-up emission inventory results. By considering four scenarios, we simulated the energy consumption and emissions in the period of 2020–2030 from the perspective of energy policies, economic measures and technology updates. We found that CO2 emissions might exceed the amount of 250 million tons by the end of 2020 under the current policy, and carbon tax with a price of 40 CNY per ton of carbon dioxide is an imperative measure to lower carbon emissions. Under the constraints, the emissions amount of SO2, NOx, PM10, and PM2.5 will be reduced by 95.3–180.8, 207.8–357.1, 149.4–274.5, and 59.5–119.8 Kt in 2030, respectively.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 467 ◽  
Author(s):  
Canek Portillo ◽  
Jorge Martinez-Bauset ◽  
Vicent Pla ◽  
Vicente Casares-Giner

Wireless Sensor Networks (WSN) have experienced an important revitalization, particularly with the arrival of Internet of Things applications. In a general sense, a WSN can be composed of different classes of nodes, having different characteristics or requirements (heterogeneity). Duty-cycling is a popular technique used in WSN, that allows nodes to sleep and wake up periodically in order to save energy. We believe that the modeling and performance evaluation of heterogeneous WSN with priorities operating in duty-cycling, being of capital importance for their correct design and successful deployment, have not been sufficiently explored. The present work presents a performance evaluation study of a WSN with these features. For a scenario with two classes of nodes composing the network, each with a different channel access priority, an approximate analytical model is developed with a pair of two-dimensional discrete-time Markov chains. Note that the same modeling approach can be used to analyze networks with a larger number of classes. Performance parameters such as average packet delay, throughput and average energy consumption are obtained. Analytical results are validated by simulation, showing accurate results. Furthermore, a new procedure to determine the energy consumption of nodes is proposed that significantly improves the accuracy of previous proposals. We provide quantitative evidence showing that the energy consumption accuracy improvement can be up to two orders of magnitude.


Sign in / Sign up

Export Citation Format

Share Document