scholarly journals Evaluation of Mechanical and Energetic Properties of the Forest Residues Shredded Chips during Briquetting Process

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3270
Author(s):  
Kamil Roman ◽  
Jan Barwicki ◽  
Witold Rzodkiewicz ◽  
Mariusz Dawidowski

The briquetting process is one of methods of solid biofuel production. During the briquetting of raw material, it can be noticed that material is viscoelastic, and reflects the effect on the volume and the final effect of the agglomerate during mentioned treatment. The research aimed to evaluate the mechanical and energetic properties of shredded pine forest residues during the briquetting process. The shredded fragments of the forest residues were compacted by the principal stresses with determination of the energy value consumed during the briquetting process. Tests were carried out using a specially designed compacting tube, with additional equipment directly mounted on the testing machine. The compaction process was carried out using the presented material and through continuous monitoring of the process parameters. During the study, it was estimated that the moisture content of the compacted material should be equal from 10 to 15%. The calculated average value of the unit energy consumption during the briquetting process (WB) was equal to 0.14 MJ·kg−1. In future research, the mathematical model can serve as an algorithm in a computer program in order to calculate the flow of biomass in the extrusion process.

2018 ◽  
Vol 10 ◽  
pp. 02006 ◽  
Author(s):  
Tatiana Ivanova ◽  
Bohumil Havrland ◽  
Radek Novotny ◽  
Alexandru Muntean ◽  
Petr Hutla

Biomass is doubtless a very significant source of renewable energy being worldwide abundant with high energy potential. This paper deals with assessment energy consumption at especially grinding and briquetting processes, which should result in essential economy of energy at solid biofuel production. Various types of raw materials were used at the experiment such as hemp (Cannabis sativa L.) biomass, two species of Miscanthus (Miscanthus sinensis, Miscanthus x gigantheus) and apple wood biomass. These materials were dried, grinded and pressed by piston press having pressing chamber diameter of 65 mm. Materials were grinded into three fractions (4 mm, 8 mm and 12 mm). Material throughput (kg.h-1) and energy consumption (kWh.t-1) were registered. As to results: the highest throughput at both grinding cases as well as briquetting was found at apple wood biomass; however the energy consumption during briquetting of apple wood was relatively high. The worst results concerning throughput and energy consumption (especially at briquetting) were found at hemp biomass. Nevertheless, briquettes made of hemp had the best mechanical durability. Both Miscunthus species (herbaceous biomass) have very similar parameters and showed quite good relation between throughput and energy consumption at the used machines.


2020 ◽  
Vol 42 (4) ◽  
pp. 41-49
Author(s):  
R.O. Shapar ◽  
O.V. Husarova ◽  
D.M. Korinchuk

The article presents an analysis of the technological stages of the production of solid biofuel from energy wood species, it is noted that up to 70% of the total energy consumption is spent on drying processes in technological processes. The urgency and advantages of low-temperature drying of such wood have been substantiated. It is noted in the work that the heat and humidity modes should ensure an increase in the energy efficiency of the process and a high calorific value of the resulting fuel. The purpose of the article is to intensify the process of dehydration of energy wood to obtain solid biofuel, to determine the effect on the process of convective low-temperature drying of the operating parameters of the drying agent, the size and shape of the raw material, and the specific load on the drying surface. Energy willow was used as an object for dehydration, the initial moisture content of which varied over a wide range from 45 to 60% per wet weight; dehydration was carried out until the material reached residual moisture content of 5...6%. Studies on the effect of the temperature of the drying agent on the kinetics of moisture exchange prove that an increase in temperature from 80 to 100 °C intensifies heat and mass transfer and reduces the duration of the process by up to 25%. The results of experimental studies of the effect of the specific load on the dehydration process showed that an increase in load has a positive effect on the productivity of the drying unit and increases the volume of processed raw materials. At the same time, the total duration of dehydration from the minimum load to the maximum increases by 3.5 times. It is noted in the work that a significant parameter of influence on the kinetics of drying and increasing the efficiency of the process is the method of grinding the raw material. The most intensive mode corresponds to the method of grinding willow by combining abrasion and impact. With this method of grinding, the drying time is reduced from 15 to 25% in comparison with the others considered. The combination of the specified conditions and parameters of low-temperature drying provides an economical process and obtaining dried willow with low and evenly distributed residual moisture. The use of such material in the technological cycle of biofuel production guarantees the reliable operation of the combustion device for a long time.


2019 ◽  
Vol 9 (3) ◽  
pp. 44-52
Author(s):  
Zorana Kovačević ◽  
Vanja Jurišić ◽  
Mateja Grubor ◽  
Ana Matin ◽  
Tajana Krička ◽  
...  

Spanish Broom (Spartium junceum L.) is a Mediterranean plant of various usage possibilities. Its fibres were known since ancient time but in some point of last century, more accurately in 1950s, their production was abandoned due to the negative economic effect. Another drawback was large time consumption, especially during the old tradition method – Spanish Broom maceration in salt water. Nowadays, due to technology development and ecological awareness, it is much easier to produce Spanish Broom fibres of enhanced quality. One of the fibre extraction methods is the one assisted with microwave oven. Demerit of such fibre production is in large residue content after obtaining fibres - approx. 90 % of initial Spanish Broom weight. Due to the need for finding sustainable solutions in the development of new materials, the usage of Spanish Broom fibres in the service of reinforcement for biopolymer poly (lactic acid) (PLA) matrix was investigated. Obtained results target our further research into the direction of Spanish Broom fibres and PLA application in the production of green composites. The aim of this research was to prove that developed product can be categorized under the biodegradable group by investigating its degradation properties using serine endopeptidase enzyme. The results show positive degradation effect while using 50 wt.% (on weight of material) enzyme concentration during a 5-day treatment. Stem residues of Spanish Broom plant derived from salty water and microwave maceration were further investigated for their potential as raw material for second-generation biofuel production. Examination of its energy properties consisted of determination of proximate and ultimate properties of the biomass. The results show low moisture content (6.5 % - 7.5 %), ash content below 5 % and higher values of fixed carbon and volatile matter content of 13.2 % and 75 %, respectively. Higher heating values that were determined (17.2 - 18.8 MJ/kg) indicate a high quality biomass that can be used most effectively in solid biofuel production.


Author(s):  
М. V. Panchuk ◽  
І. М. Semianyk ◽  
I. O, Mandryk

The reserves of fossil fuel resources in Ukraine are limited, that is why the usage of solid biofuel from renewable raw materials is one of the most important factors of state energy policy directed at the preservation of traditional fuel and energy resources and improvement of the environment condition. The analysis of biological resources is made in this paper, and it is determined that Ukraine has a sufficient potential which is available for energy production and constitutes around 29 million tons of equivalent fuel. Energy crops are an important resource therewith. A potential yield of solid biofuel from perennial energy crops can constitute approximately 35.8 million tons per year. It is shown that raw biomass has a number of disadvantages: low energy density, unstable granulometry, wide spread of moisture content, and low bulk density which are the main problems for its storage and transportation. In order to increase consumer performance properties of biomass, the granulation process is suggested to be used. The implementation of granulation process will allow to eliminate the shortcomings of biological raw material and to transform it into a high-efficiency fuel.  One of the most important conditions of effective and profitable functioning of granulated biomass production is the availability and regular supply of raw materials. Therewith, for Ukraine's conditions it is worthwhile to use sets of high-power equipment for its operation both in the places with high concentration of raw materials and small mobile units which can work in stationary conditions and move to the places with sufficient amount of raw materials decreasing the costs of biomass transportation to minimum. At the same time, there is a need in developing new homeland elaborations, both complex process lines and individual equipment units for different capacities.   The paper determines the main directions of using granulation products among which are: combustion in pellet boilers, common combustion with coal, and gasification of granulated biomass for obtaining motor oils. It is mentioned that the application of granulation technologies solves not only the energy problems but also a set of other problems: ecological, agricultural, forestry and social ones.


2021 ◽  
Vol 195 ◽  
pp. 110775
Author(s):  
Congyu Zhang ◽  
Shih-Hsin Ho ◽  
Wei-Hsin Chen ◽  
Chun Fong Eng ◽  
Chin-Tsan Wang

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Negisa Darajeh ◽  
Azni Idris ◽  
Paul Truong ◽  
Astimar Abdul Aziz ◽  
Rosenani Abu Bakar ◽  
...  

Palm oil mill effluent (POME), a pollutant produced by the palm oil industry, was treated by the Vetiver system technology (VST). This technology was applied for the first time to treat POME in order to decrease biochemical oxygen demand (BOD) and chemical oxygen demand (COD). In this study, two different concentrations of POME (low and high) were treated with Vetiver plants for 2 weeks. The results showed that Vetiver was able to reduce the BOD up to 90% in low concentration POME and 60% in high concentration POME, while control sets (without plant) only was able to reduce 15% of BOD. The COD reduction was 94% in low concentration POME and 39% in high concentration POME, while control just shows reduction of 12%. Morphologically, maximum root and shoot lengths were 70 cm, the number of tillers and leaves was 344 and 86, and biomass production was 4.1 kg m−2. These results showed that VST was effective in reducing BOD and COD in POME. The treatment in low concentration was superior to the high concentration. Furthermore, biomass of plant can be considered as a promising raw material for biofuel production while high amount of biomass was generated in low concentration of POME.


2012 ◽  
Vol 504-506 ◽  
pp. 587-592 ◽  
Author(s):  
Marion Merklein ◽  
Tommaso Stellin ◽  
Ulf Engel

A high rate of production of complex microparts is increasingly required by fields like electronics and micromechanics. Handling is one of the main problems, limiting those forming processes of small metal components consisting of multiple forming stages. A forming chain in which a metal strip acts both as raw material and support of the workpiece through the different stages of the process, is seen as a solution that radically simplifies the positioning of microparts. Each workpiece stays connected to the strip through all the forming steps, being separated just at the end of the process chain. In this work, a tooling system for the bulk forming from copper strips has been set up and employed in a full forward extrusion process of a micro-billet. The same die, with a diameter of 1 mm, has been used with three different strip thicknesses (1, 2 and 3 mm) and three different material conditions. The use of thinner and hard-as-rolled strips has resulted in achieving a higher ratio of the billet length to strip thickness.


2013 ◽  
Vol 554-557 ◽  
pp. 630-637 ◽  
Author(s):  
Martin Grüner ◽  
Marion Merklein

Aluminium alloys show a great potential for lightweight constructions due to their high strength and low density but the production of this material is very energy consuming. Also the recycling of aluminium alloys, e.g. chips from the milling process, shows different challenges. Beside contamination by cooling lubricant and oxidation of the surface of the chips the melting and rolling process for new semi finish products needs a high amount of energy. TEKKAYA shows a new approach for recycling of aluminium alloy chips by an extrusion process at elevated temperatures producing different kinds of profiles. A new idea is the production of components directly out of chips using severe plastic deformation for joining of the chips similar to the accumulative roll bonding process in sheet metal forming. In a first approach aluminium alloy chips out of a milling process were uniaxial compressed with different loads inside an axisymmetric tool installed in a universal testing machine. The compressed chip disks subsequently were tested with two experiments to gain information on their stability. First experiment is a disk compression test with the disk standing on its cylindrical surface, giving information on the stability perpendicular to the compression direction. Second experiment is a stacked disk compression test with three disks to investigate the stability parallel to compression direction. During all three tests force and displacement values are recorded by the universal testing machine. These data are also processed to calculate or identify input parameters for the numerical investigations. For numerical simulation ABAQUS in conjunction with the Drucker-Prager-Cap material model, which is often used for sintering processes, seems to be a good choice. By numerical simulation of the experiments and comparison with the experiments input parameters for the material model can be identified showing good accordance. This material model will be used in future numerical investigations of an extrusion process to identify tool geometries leading to high strains inside the material and by this to an increased stability of the parts.


Sign in / Sign up

Export Citation Format

Share Document