scholarly journals Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5426
Author(s):  
Waheed A. Rasaq ◽  
Mateusz Golonka ◽  
Miklas Scholz ◽  
Andrzej Białowiec

Most pyrolysis reactors require small sizes of biomass particles to achieve high-quality products. Moreover, understanding the usefulness of high-pressure systems in pyrolysis is important, given the operational challenges they exhibit specific to various biomass materials. To actualize these aspects, the authors first checked previous reviews involving pyrolysis on different biomass and different conditions/situations with their respective objectives and subsections. From these already existing reviews, the team found that there has not been much emphasis on high-pressure fast pyrolysis and its potential in biomass conversion, showing that it is a novel direction in the pyrolysis technology development. Therefore, this review aims to shed more light on high-pressure fast pyrolysis, drawing from (a) classification of pyrolysis; (b) reactors used in fast pyrolysis; (c) heat transfer in pyrolysis feedstock; (d) fast pyrolysis parameters; (e) properties/yields of fast pyrolysis products; (f) high pressure on pyrolysis process; (g) catalyst types and their application; and (h) problems to overcome in the pyrolysis process. This review increases the understanding regarding high-pressure fast pyrolysis. An attempt has been made to demonstrate how high-pressure fast pyrolysis can bring about high-quality biomass conversion into new products. It has been shown that fluidized bed (bubbling and circulating) reactors are most suitable and profitable in terms of product yield. The high-pressure, especially combined with the fast-heating rate, may be more efficient and beneficial than working under ambient pressure. However, the challenges of pyrolysis on a technical scale appear to be associated with obtaining high product quality and yield. The direction of future work should focus on the design of high-pressure process reactors and material types that might have greater biomass promise, as well understanding the impact of pyrolysis technology on the various output products, especially those with lower energy demands. We propose that the increase of process pressure and biomass particle size decrease should be considered as variables for optimization.

2014 ◽  
Vol 1019 ◽  
pp. 143-151
Author(s):  
Carl J. Reinhardt ◽  
Morris Murray ◽  
Isaac Bohlken

High Quality Cost Effective Die Castings rely to a large extent on successful, effective and practical die design. A review is carried out of some runner and gate designs which resulted in successful high quality castings. Some High Pressure and Gravity cast casting are evaluated. Simulation results for evaluating the impact on the flow during filling due to Runner Geometries, Gate Geometries and positions as well as venting, overflows or risers are discussed. Thermal intervention through the use of internal thermal channels are also evaluated through the use of simulation results. The paper centres on a discussion of analysis of simulation results, predicting defects which impact on some aspects of surface finish and porosity. A case study is presented showing the value of following and taking heed of lessons learnt from simulation results, to carry out die designs with reduced reliance on simulation. Index Terms: South African Foundries, High Pressure Die Casting, Computerised Fluid Dynamics Simulation, Die Design, Defect Reduction.


Energy ◽  
2020 ◽  
Vol 190 ◽  
pp. 116371 ◽  
Author(s):  
Lujiang Xu ◽  
Shijia Chen ◽  
He Song ◽  
Yang Liu ◽  
Chenchen Shi ◽  
...  

2019 ◽  
Vol 123 (1260) ◽  
pp. 230-247 ◽  
Author(s):  
B. Beirow ◽  
A. Kühhorn ◽  
F. Figaschewsky ◽  
P. Hönisch ◽  
T. Giersch ◽  
...  

ABSTRACTIn order to prepare an advanced 4-stage high-pressure compressor rig test campaign, details regarding both accomplishment and analysis of preliminary experiments are provided in this paper. The superior objective of the research project is to contribute to a reliable but simultaneously less conservative design of future high pressure blade integrated disks (blisk). It is planned to achieve trend-setting advances based on a close combination of both numerical and experimental analyses. The analyses are focused on the second rotor of this research compressor, which is the only one being manufactured as blisk. The comprehensive test program is addressing both surge and forced response analyses e.g. caused by low engine order excitation. Among others the interaction of aeroelastics and blade mistuning is demanding attention in this regard. That is why structural models are needed, allowing for an accurate forced response prediction close to reality. Furthermore, these models are required to support the assessment of blade tip timing (BTT) data gathered in the rig tests and strain gauge (s/g) data as well. To gain the maximum information regarding the correlation between BTT data, s/g-data and pressure gauge data, every blade of the second stage rotor (28 blades) is applied with s/g. However, it is well known that s/g on blades can contribute additional mistuning that had to be considered upon updating structural models.Due to the relevance of mistuning, efforts are made for its accurate experimental determination. Blade-by-blade impact tests according to a patented approach are used for this purpose. From the research point of view, it is most interesting to determine both the effect s/g-instrumentation and assembling the compressor stages on blade frequency mistuning. That is why experimental mistuning tests carried out immediately after manufacturing the blisk are repeated twice, namely, after s/g instrumentation and after assembling. To complete the pre-test program, the pure mechanical damping and modal damping ratios dependent on the ambient pressure are experimentally determined inside a pressure vessel. Subsequently the mistuning data gained before is used for updating subset of nominal system mode (SNM) models. Aerodynamic influence coefficients (AICs) are implemented to take aeroelastic interaction into account for forced response analyses. Within a comparison of different models, it is shown for the fundamental flap mode (1F) that the s/g instrumentation significantly affects the forced response, whereas the impact of assembling the compressor plays a minor role.


1997 ◽  
Vol 22 (3) ◽  
Author(s):  
Michael Jensen

Abstract: Scholarly publishing and access to high-quality information may in fact be threatened, rather than improved, by the revolution in communications, particularly in a fully commercial Internet. The effects of the political revolution in Eastern Europe on scholarship and quality publishing are used as a touchstone of the dangers that occur when naïve revolutionaries make swift changes without fully recognizing the impact upon delicately balanced social institutions such as non-profit organizations. Résumé: La révolution en communications, particulièrement en ce qui regarde un Internet commercialisé, plutôt que d'améliorer l'édition savante et l'accès à de l'information de haute qualité, pourrait en fait poser une menace pour ceux-ci. Cet article examine comment la révolution politique en Europe de l'Est a influé sur la recherche et l'édition de qualité. Il utilise cet exemple pour examiner les dangers que peuvent courir certains révolutionnaires naïfs quand ils instaurent des changements rapides san songer à leur impact sur des institutions sociales à équilibre délicat comme les organisations à but non lucratif.


2019 ◽  
Vol 38 (4) ◽  
pp. 131-149 ◽  
Author(s):  
Patrick J. Hurley ◽  
Brian W. Mayhew

SUMMARY We insert an automated high-quality (HQ) auditor into established experimental audit markets to test the impact of high-quality competition on other auditors' supply of and managers' demand for audit quality. Theory predicts that managers will demand high levels of audit quality to avoid investors' price-protecting behavior. This demand should result in the HQ auditor dominating the market and increase other auditors' audit quality provision to compete with the HQ auditor. However, we find that the HQ auditor does not dominate the market—despite holding audit costs constant and investors placing a premium on HQ auditor reports. We also find that adding an HQ auditor results in other auditors lowering audit quality. Additional analyses indicate some managers demand lower audit quality to avoid negative audit reports, consistent with loss aversion as a potential explanation. Our findings indicate a need to develop a more comprehensive theory of the demand for auditing. Data Availability: The laboratory market data used in this study are available from the authors upon request.


2021 ◽  
Vol 11 (10) ◽  
pp. 4658
Author(s):  
Magdalena Januszek ◽  
Paweł Satora

Quality of plum jerkum is significantly associated to the profile of volatile compounds. Therefore, we decided to assess the impact of various fermentation types on selected properties of plum jerkums, especially compounds which contribute to the aroma of the finished product. We used the following yeast strains: S. cerevisiae S1, H. uvarum H2, and Ethanol RED (S. cerevisiae). Moreover, we considered spontaneous fermentation. S. cerevisiae and H. uvarum strains were isolated during the fermentation of Čačanska Lepotica or Węgierka Dąbrowicka (plum cultivars), respectively. As for fermentation type, spontaneous fermentation of H. uvarum H2 provided the best results. It could be associated to the fact that plum juices fermented with H. uvarum H2 presented the highest concentration of terpenoids, esters, or some higher alcohols. In the current paper, application of indigenous strains of yeasts resulted in the required oenological characteristics, e.g., highest fermentation efficiency and concentration of ethanol was determined in juices fermented with Ethanol RED (S. cerevisiae) and also with S. cerevisiae S1. Our results suggested that indigenous strains of yeasts present in plums demonstrate great potential for the production of plum jerkums of high quality.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 84
Author(s):  
Xiaohong Wang ◽  
Zhipeng Chen ◽  
Duo Dong ◽  
Dongdong Zhu ◽  
Hongwei Wang ◽  
...  

The phase selection of hyper-peritectic Al-47wt.%Ni alloy solidified under different pressures was investigated. The results show that Al3Ni2 and Al3Ni phases coexist at ambient pressure, while another new phase α-Al exists simultaneously when solidified at high pressure. Based on the competitive growth theory of dendrite, a kinetic stabilization of metastable peritectic phases with respect to stable ones is predicted for different solidification pressures. It demonstrates that Al3Ni2 phase nucleates and grows directly from the undercooled liquid. Meanwhile, the Debye temperatures of Al-47wt.%Ni alloy that fabricated at different pressures were also calculated using the low temperature heat capacity curve.


2014 ◽  
Vol 248 ◽  
pp. 107-121 ◽  
Author(s):  
Jan Henrik Finke ◽  
Svea Niemann ◽  
Claudia Richter ◽  
Thomas Gothsch ◽  
Arno Kwade ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 378
Author(s):  
Li Zhao ◽  
Zhiwei Hu ◽  
Hanjie Guo ◽  
Christoph Geibel ◽  
Hong-Ji Lin ◽  
...  

We report on the synthesis and physical properties of cm-sized CoGeO3 single crystals grown in a high pressure mirror furnace at pressures of 80 bar. Direction dependent magnetic susceptibility measurements on our single crystals reveal highly anisotropic magnetic properties that we attribute to the impact of strong single ion anisotropy appearing in this system with TN∼33.5 K. Furthermore, we observe effective magnetic moments that are exceeding the spin only values of the Co ions, which reveals the presence of sizable orbital moments in CoGeO3.


Sign in / Sign up

Export Citation Format

Share Document