scholarly journals Linearization of Thermal Equivalent Temperature Calculation for Fast Thermal Comfort Prediction

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5922
Author(s):  
Christian Rommelfanger ◽  
Louis Fischer ◽  
Jérôme Frisch ◽  
Christoph Van Treeck

Virtual simulations and calculations are a key technology for future development methods. A variety of tools and methods for calculating thermal comfort have not gained sufficient acceptance in practice due to their inherent complexity. This article investigates alternative means of determining thermal comfort, namely, the linearization of the equivalent temperature calculation. This enables a wide range of users to evaluate thermal comfort in a fast and easy manner, for example, for energy efficiency simulation. A flow and thermal model were created according to the requirements of DIN EN ISO 14505 to determine heat transfer coefficients under calibration conditions. The model to simulate the equivalent temperature in calibration conditions comprises a geometrically realistic 3D model of a human test person according to the standard. The influence of the turbulence model, as well as the influence of the equivalent temperature on the heat transfer coefficient in calibration conditions, was investigated. It was found that the dependence of the equivalent temperature is mandatory. The dependence between the heat transfer and the equivalent temperature was taken into account with a continuous linearization approach. An equation-based implementation methodology is proposed, enabling a quick implementation of comfort evaluation in future simulation models. Two test cases show the capabilities of the new model and its application in future work.

Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 507
Author(s):  
Chrysovalantis C. Templis ◽  
Nikos G. Papayannakos

Mass and heat transfer coefficients (MTC and HTC) in automotive exhaust catalytic monolith channels are estimated and correlated for a wide range of gas velocities and prevailing conditions of small up to real size converters. The coefficient estimation is based on a two dimensional computational fluid dynamic (2-D CFD) model developed in Comsol Multiphysics, taking into account catalytic rates of a real catalytic converter. The effect of channel size and reaction rates on mass and heat transfer coefficients and the applicability of the proposed correlations at different conditions are discussed. The correlations proposed predict very satisfactorily the mass and heat transfer coefficients calculated from the 2-D CFD model along the channel length. The use of a one dimensional (1-D) simplified model that couples a plug flow reactor (PFR) with mass transport and heat transport effects using the mass and heat transfer correlations of this study is proved to be appropriate for the simulation of the monolith channel operation.


Author(s):  
Anil K. Tolpadi ◽  
Michael E. Crawford

The heat transfer and aerodynamic performance of turbine airfoils are greatly influenced by the gas side surface finish. In order to operate at higher efficiencies and to have reduced cooling requirements, airfoil designs require better surface finishing processes to create smoother surfaces. In this paper, three different cast airfoils were analyzed: the first airfoil was grit blasted and codep coated, the second airfoil was tumbled and aluminide coated, and the third airfoil was polished further. Each of these airfoils had different levels of roughness. The TEXSTAN boundary layer code was used to make predictions of the heat transfer along both the pressure and suction sides of all three airfoils. These predictions have been compared to corresponding heat transfer data reported earlier by Abuaf et al. (1997). The data were obtained over a wide range of Reynolds numbers simulating typical aircraft engine conditions. A three-parameter full-cone based roughness model was implemented in TEXSTAN and used for the predictions. The three parameters were the centerline average roughness, the cone height and the cone-to-cone pitch. The heat transfer coefficient predictions indicated good agreement with the data over most Reynolds numbers and for all airfoils-both pressure and suction sides. The transition location on the pressure side was well predicted for all airfoils; on the suction side, transition was well predicted at the higher Reynolds numbers but was computed to be somewhat early at the lower Reynolds numbers. Also, at lower Reynolds numbers, the heat transfer coefficients were not in very good agreement with the data on the suction side.


Author(s):  
Shang-Feng Yang ◽  
Je-Chin Han ◽  
Salam Azad ◽  
Ching-Pang Lee

This paper experimentally investigates the effect of rotation on heat transfer in typical turbine blade serpentine coolant passage with ribbed walls at low Mach numbers. To achieve the low Mach number (around 0.01) condition, pressurized Freon R-134a vapor is utilized as the working fluid. The flow in the first passage is radial outward, after the 180 deg tip turn the flow is radial inward to the second passage, and after the 180 deg hub turn the flow is radial outward to the third passage. The effects of rotation on the heat transfer coefficients were investigated at rotation numbers up to 0.6 and Reynolds numbers from 30,000 to 70,000. Heat transfer coefficients were measured using the thermocouples-copper-plate-heater regional average method. Heat transfer results are obtained over a wide range of Reynolds numbers and rotation numbers. An increase in heat transfer rates due to rotation is observed in radially outward passes; a reduction in heat transfer rate is observed in the radially inward pass. Regional heat transfer coefficients are correlated with Reynolds numbers for nonrotation and with rotation numbers for rotating condition, respectively. The results can be useful for understanding real rotor blade coolant passage heat transfer under low Mach number, medium–high Reynolds number, and high rotation number conditions.


Author(s):  
R. J. Yadav ◽  
Sandeep Kore ◽  
V. N. Riabhole

Heat transfer and pressure drop characteristics in a circular tube with twisted tapes have been investigated experimentally and numerically using different working fluids by many researchers for wide range of Reynolds number. The swirl was generated by tape inserts of various twist ratios. The various twist ratios are considered Many researchers formed generalized correlations to predict friction factors and convective heat transfer coefficients with twisted tapes in a tube for a wide range of Reynolds numbers and Prandtl numbers. Satisfactory agreement was obtained between the present correlations and the data of others validate the proposed correlations. The experimental or numerical predictions were compared with earlier correlations revealing good agreement between them. From the literature review it is observed that most studies are mainly focused on the heat transfer enhancement using twisted tape by experimental or numerical solution. An investigation with analytical approach is rarely reported. Therefore, the main aim of the present work is to form a correlation from theoretical approach for Nusselt number for circular tube with twisted tape. Application of dimensional analysis to heat transfer in tape generated swirl flow is carried out.


1972 ◽  
Vol 94 (1) ◽  
pp. 169-179 ◽  
Author(s):  
E. K. Levy ◽  
G. A. Brown

The performance of a condensing ejector depends on the interactions occurring between the liquid and vapor streams in the mixing section. Axial static and liquid-vapor stagnation pressure profiles were measured in a constant-area mixing section using steam and water over a limited range of inlet vapor conditions and a wide range of inlet liquid velocities. Three flow regimes were identified based on inlet liquid velocity. Complete vapor condensation due to a “condensation shock” occurred only in the High Inlet Liquid Velocity Regime. The presence of supersonic vapor flow was found to be a necessary but not a sufficient condition for the existence of the “condensation shock.” In addition, breakup of the liquid jet was found to play an important role in the mixing section processes. A quasi one-dimensional analytical model of the annular liquid-vapor flow patterns occurring in the upstream portion of the mixing section was formulated. Though it was not possible to predict sufficiently accurately the interfacial heat transfer rates from any currently available analyses or data, interfacial heat transfer coefficients of approximately 100 Btu/sec ft2 deg F were found to produce good agreement between the experimentally measured and computed analytical axial static pressure variations. These values compare favorably with other data on the heat transfer rates to turbulent water jets with condensation.


1990 ◽  
Vol 112 (4) ◽  
pp. 921-925 ◽  
Author(s):  
M. Dietrich ◽  
R. Blo¨chl ◽  
H. Mu¨ller-Steinhagen

Heat transfer coefficients were measured for forced convection of isobutanol in crossflow past coiled wires with different coil geometries. Flow rate and heat flux have been varied over a wide range to include laminar and turbulent flow for convective sensible and subcooled boiling heat transfer. To investigate the effect of coil geometry on heat transfer, the wire diameter, coil diameter, and coil pitch were varied systematically. The measured data are compared with the predictions of four correlations from the literature.


1968 ◽  
Vol 90 (2) ◽  
pp. 191-198 ◽  
Author(s):  
R. D. Haberstroh ◽  
L. V. Baldwin

The temperature profiles and heat-transfer coefficients are predicted for fully developed turbulent pipe flow with constant wall heat flux for a wide range of Prandtl and Reynolds numbers. The basis for integrating the energy equation comes from a continuously differentiable velocity profile which fits the physical boundary conditions and is a rigorous (though not necessarily unique) solution of the Reynolds equations. This velocity profile is the semiempirical relation proposed by S. I. Pai, reference [12]. The assumptions are those of steady, incompressible, constant-property, fully developed, turbulent flow of Newtonian fluids in smooth, circular pipes with constant heat flux at the wall. The ratio of the turbulent thermal diffusivity to the turbulent momentum diffusivity is taken to be unity. The thermal quantities are obtained by numerical integration of the energy equation, and they are presented as curves and tables. A compact formula for the Nusselt number is given for a wide range of Reynolds and Prandtl numbers. The results degenerate identically to the case of laminar flow. The heat-transfer calculation requires neither adjustable factors nor data-fitting beyond the empirical constants in the momentum equation; thus this analysis constitutes a heat-transfer prediction to be tested against heat-transfer data.


1965 ◽  
Vol 87 (4) ◽  
pp. 477-483 ◽  
Author(s):  
H. S. Swenson ◽  
J. R. Carver ◽  
C. R. Kakarala

Local forced convection heat-transfer coefficients for supercritical water flowing inside smooth-bore tubes were obtained experimentally over a range of pressures (3300 to 6000 psia) and bulk temperatures (167 to 1068 F). Because the thermophysical properties of supercritical fluids change rapidly with temperature in the pseudocritical range, conventional forced convection correlations were unable to fit the data. However, a satisfactory correlation for fully developed turbulent flow was obtained by properly modifying the conventional nondimensional model to account for the physical property variation across the boundary layer. Out of 2951 data points, 95 percent lie within ±15 percent of the correlation. It was also found that the same equation correlated supercritical pressure heat-transfer data of carbon dioxide over a wide range of conditions with good accuracy.


2005 ◽  
Vol 127 (8) ◽  
pp. 897-902 ◽  
Author(s):  
Majid Bazargan ◽  
Daniel Fraser ◽  
Vijay Chatoorgan

Heat transfer to supercritical water and buoyancy∕natural convection effects are becoming increasingly important areas of research due to current trends in nuclear reactor design and supercritical water oxidation facilities. A pilot-scale supercritical water oxidation loop was constructed at the University of British Columbia. For this work, the facility was used to study the relative importance of buoyancy effects on supercritical water flowing in a horizontal pipe. Local heat transfer coefficients at the top and bottom surfaces of the horizontal test section were systematically measured over a wide range of conditions at supercritical pressures between 23 to 27 MPa, uniform heat fluxes were up to 310kW∕m2, and the mass flux ranged from 330 to 1230kg∕m2s. It was found that neglecting buoyancy effects could cause large discrepancies between the predictions of available empirical correlations and the experimental data. The data was used to assess available criteria for the buoyancy-free region during horizontal supercritical fluid flows. The criterion of Petukhov and Polyakov, which, for the range of parameters in this study, was found to be accurate in predicting the onset of buoyancy effects. The experimental investigation is confined to supercritical flows with heat addition only. Hence, no heat loss conditions at supercritical temperatures were investigated.


1999 ◽  
Vol 123 (4) ◽  
pp. 749-757 ◽  
Author(s):  
S. Baldauf ◽  
A. Schulz ◽  
S. Wittig

Local heat transfer coefficients on a flat plate surface downstream a row of cylindrical ejection holes were investigated. The parameters blowing angle, hole pitch, blowing rate, and density ratio were varied over a wide range, emphasizing engine relevant conditions. A high-resolution IR-thermography technique was used for measuring surface temperature fields. Local heat transfer coefficients were obtained from a Finite Element analysis. IR-determined surface temperatures and backside temperatures of the cooled test plate measured with thermocouples were applied as boundary conditions in this heat flux computation. The superposition approach was employed to obtain the heat transfer coefficient hf based on the difference between actual wall temperatures and adiabatic wall temperatures in the presence of film cooling. The hf data are given for an engine relevant density ratio of 1.8. Therefore, heat transfer results with different wall temperature conditions and adiabatic film cooling effectiveness results for identical flow situations (i.e., constant density ratios) were combined. Characteristic surface patterns of the locally resolved heat transfer coefficients hf are recognized and quantified as the different ejection parameters are changed. The detailed results are used to discuss the specific local heat transfer behavior in the presence of film cooling. They also provide a base of surface data essential for the validation of the heat transfer capabilities of CFD codes in discrete hole film cooling.


Sign in / Sign up

Export Citation Format

Share Document