scholarly journals Experimental Testing of Combustion Parameters and Emissions of Waste Motor Oil and Its Diesel Mixtures

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5950
Author(s):  
Dragiša Đorđić ◽  
Milan Milotić ◽  
Zoran Ćurguz ◽  
Slavko Đurić ◽  
Tihomir Đurić

The production of hydrocarbon fuel from waste engine oil is an excellent way to produce alternative fuels. The aim of the research in this paper is obtaining fuel with a mixture of waste engine oil (WMO) and diesel fuel that can be used as an alternative fuel for internal combustion engines and low power heat generators. With this goal in mind, tests were conducted to estimate the combustion parameters and emissions at a low heat output of 40 kW. Waste motor oils (WMO) and four of its diesel mixtures were used, varying in weight from 20% WMO to 50% WMO. Test results were analysed and compared with diesel fuel. Higher NO, CO and CO2 emissions were determined for WMO and its mixtures compared to diesel fuel. The flue gas temperature in the kiln was high for all WMO and diesel blends, which indicates the efficiency of the input energy. The absorption of flue gases in the scrubber with distilled water showed higher presence of sulphates, sulphides, nitrates and nitrites compared to allowable values.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1538
Author(s):  
Felipe Andrade Torres ◽  
Omid Doustdar ◽  
Jose Martin Herreros ◽  
Runzhao Li ◽  
Robert Poku ◽  
...  

The worldwide consumption of fossil hydrocarbons in the road transport sector in 2020 corresponded to roughly half of the overall consumption. However, biofuels have been discreetly contributing to mitigate gaseous emissions and participating in sustainable development, and thus leading to the extending of the commercial utilization of internal combustion engines. In this scenario, the present work aims at exploring the effects of alternative fuels containing a blend of 15% ethanol and 35% biodiesel with a 50% fossil diesel (E15D50B35) or 50% Fischer–Tropsch (F-T) diesel (E15FTD50B35) on the engine combustion, exhaust emissions (CO, HC, and NOx), particulate emissions characteristics as well as the performance of an aftertreatment system of a common rail diesel engine. It was found that one of the blends (E15FTD50B35) showed more than 30% reduction in PM concentration number, more than 25% reduction in mean particle size, and more than 85% reduction in total PM mass with respect to conventional diesel fuel. Additionally, it was found that the E15FTD50B35 blend reduces gaseous emissions of total hydrocarbons (THC) by more than 25% and NO by 3.8%. The oxidation catalyst was effective in carbonaceous emissions reduction, despite the catalyst light-off being slightly delayed in comparison to diesel fuel blends.


2015 ◽  
Vol 787 ◽  
pp. 687-691
Author(s):  
Tarigonda Hari Prasad ◽  
R. Meenakshi Reddy ◽  
P. Mallikarjuna Rao

Fossil fuels are exhausting quickly because of incremental utilization rate due to increase population and essential comforts on par with civilization. In this connection, the conventional fuels especially petrol and diesel for internal combustion engines, are getting exhausted at an alarming rate. In order to plan for survival of technology in future it is necessary to plan for alternate fuels. Further, these fossil fuels cause serious environmental problems as they release toxic gases into the atmosphere at high temperatures and concentrations. The predicted global energy consumption is increasing at faster rate. In view of this and many other related issues, these fuels will have to be replaced completely or partially by less harmful alternative, eco-friendly and renewable source fuels for the internal combustion engines. Hence, throughout the world, lot of research work is in progress pertaining to suitability and feasibility of alternative fuels. Biodiesel is one of the promising sources of energy to mitigate both the serious problems of the society viz., depletion of fossil fuels and environmental pollution. In the present work, experiments are carried out on a Single cylinder diesel engine which is commonly used in agricultural sector. Experiments are conducted by fuelling the diesel engine with bio-diesel with LPG through inlet manifold. The engine is properly modified to operate under dual fuel operation using LPG through inlet manifold as fuel along FME as ignition source. The brake thermal efficiency of FME with LPG (2LPM) blend is increased at an average of 5% when compared to the pure diesel fuel. HC emissions of FME with LPG (2LPM) blend are reduced by about at an average of 21% when compared to the pure diesel fuel. CO emissions of FME with LPG (2LPM) blends are reduced at an average of 33.6% when compared to the pure diesel fuel. NOx emissions of FME with LPG (2LPM) blend are reduced at an average of 4.4% when compared to the pure diesel fuel. Smoke opacity of FME with LPG (2LPM) blend is reduced at an average of 10% when compared to the pure diesel fuel.


2021 ◽  
Vol 351 ◽  
pp. 01004
Author(s):  
Ľubomír Hujo ◽  
Matej Michalides ◽  
Jozef Nosian ◽  
Mirko Simikić

For the purpose of measuring the flow and pressure characteristics of oil filters used in vehicles with internal combustion engines, a laboratory test equipment was used, which was designed at the Department of Transport and Handling of the Slovak University of Agriculture in Nitra. The target information from the given measurement is the obtained data on the change of flow and pressure, based on the type of oil filter used. The contribution of this paper is information that can be used in the future in the design of new filtration equipment, as well as the creation of a system for evaluating the technical life of motor oils, in order to extend the service intervals of motor oil, monitored set of motor vehicles.


Author(s):  
J. Thanikachalam ◽  
S. Karthikeyan

Purpose: of this paper is to investigate the reusability of contaminated waste lubricant oil as flammable fuel by thermal and catalytic cracking process followed by distillation. It also includes the study of using Zeolite and Nickel nano particles as catalyst and its influence catalytic cracking. Design/methodology/approach: A conventional sterilization technique called Autoclaving method, uses high-pressure steam to separate water and other solid waste from the lube oil. It is followed by thermal cracking which breaks the molecular chains and decompose the waste lube oil. The autoclaving process works by the concept that the boiling point of water (or steam) increases when it is under pressure. Findings: Now a days, Industrial and Automobile waste lubricating oils are giving big threat ecology while burning and disposing on bare land. Furthermore, they discharged into the open environment which might make destructive sicknesses to ecology. In water, oil is a visible pollutant, floating as a scum on the surface. Moreover, there is a gradual rise in fuel requirement across the globe, and the consumption of oil assets have driven the researchers to find elective power for internal combustion engines. By the way, diminishing of fossil sources, growing of demand and cost of petroleum based fuels and its environmental hazards as a result of burning or disposing on land have encouraged to investigate possibility of recycling of waste engine oil. Research limitations/implications: A series of process such as filtration, cracking followed by distillation needs expensive experimental setup and regular maintenance as the extracted flammable oil fuel possess significant range of dynamic viscosity values. As all real fluids has its own viscosity, in near future, an investigation is about to do on its behaviour on blending with other flammable fluids. Practical implications: Although the result of this investigation conforming its flammable characteristic of the extracted fuel, the quantity of pollutant free flammable fuel from waste contaminated lube oil being extracted is significant, the cost of catalyst is considerably more, as it plays the most vital part in cracking. This effort likely also reduces foreign exchange, reduces greenhouse emissions and enhances regional development especially in developing countries. Originality/value: The novelty of the work is to prepare pollutant free flammable fuel from waste Lube oil by catalytic cracking process. Here Zoelite and Nickel nanoparticles are used as catalyst which breaks the long-chain molecules of the high boiling hydrocarbon liquids into much shorter molecules.


Author(s):  
Seyed Navid Shahangian ◽  
Mojtaba Keshavarz ◽  
Ghasem Javadirad ◽  
Nader Bagheri ◽  
Seyed Ali Jazayeri

HCCI engines have low emission and high efficiency values compared to the conventional internal combustion engines. These engines can operate on most alternative fuels such as dimethyl ether (DME), which has been tested as a possible diesel fuel for its simultaneously reduced NOx and PM emissions. HCCI combustion of both DME and n-heptane fuels display a distinct two-stage ignition reaction with the first stage taking place at fairly low temperatures and the second stage taking place at high temperatures. The second stage is responsible for the main stage of the heat release process. In this study, a single-zone, zero-dimensional, thermo-kinetic combustion model has been developed. MATLAB software is used to predict engine performance characteristics of HCCI engines using two types of diesel fuel: Dimethyl ether and N-heptane. The effects of intake temperature and pressure, fuel loading and addition of EGR gases on auto-ignition characteristics, optimum combustion phasing, and performance of the HCCI engines are considered in this study. Simultaneous effects of these variables for finding the most appropriate regime of HCCI engine operation, considering knock and misfire boundaries, are also investigated.


Author(s):  
S. І. Kryshtopa ◽  
L. І. Kryshtopa ◽  
М. М. Hnyp ◽  
І. М. Mykytii

This article considers usage of blue-green algae as biomaterials for creation of motor biofuels. Proliferation of blue-green algae leads to water rotting, destruction of aquatic ecosystems and destruction of rivers and lakes that is why clearing of water bodies from blue-green algae is an urgent task. The object of the study is effect of blended biodiesel fuels from blue-green algae on the environmental and energy performances for the diesel engine. The purpose of the work is experimental study of changes of power and ecological characteristics of automobile diesel engines using petroleum diesel and their mixtures with biofuels derived from blue-green algae. Methods of research are experimental, laboratory ones. Laboratory researches were carried out on an experimental installation based on the serial diesel engine D21A1. As a result of performed experimental researches dependences of changing of the effective engine power on the use of diesel fuel and a mixture of diesel fuel with the received bioactive supplements based on methyl esters of the lipid fraction of blue-green algae Chroococcfles in the amount of 5, 10 and 20 % were established. It has been experimentally established that the effective power of an engine using a mixture of diesel fuel with the derived bioactive compounds based on methyl esters of the lipid fraction of blue-green algae Chroococcfles in the amount of 5, 10 and 20 % will decrease by an average of 0,9, 1,8 and 3,5 %. It has been experimentally determined that the content of carbon monoxide in the use of a mixture of diesel fuel with the derived bioactive compounds based on methyl esters of the lipid fraction of blue-green algae Chroococcfles in the amount of 5, 10 and 20 % will decrease by an average of 6,5, 13,9 and 28,7 %. The obtained results allow to optimize the choice of fuels for power systems of internal combustion engines and to reduce emissions of harmful substances in exhaust gases of automobile diesel engines.


2016 ◽  
Vol 5 (5) ◽  
pp. 8-21
Author(s):  
Неверова ◽  
V. Neverova ◽  
Марков ◽  
V. Markov ◽  
Бовэнь ◽  
...  

The depletion of oil fields and the deteriorating environmental situation leads to the need for the search of new alternative sources of energy. Actuality of the article due to the need for greater use of the alternative fuels in internal combustion engines is necessary. Fuels produced from vegetable oils and animal fats as advanced alternative fuels for diesel engines are considered. These fuels are produced from renewable raw materials and are characterized by good environmental qualities. Advantages of using fuels of vegetable origin as motor fuels are shown. Experimental research of diesel engine D-245.12S functioning on mixtures of diesel fuel and mustard oil of various percentage is given. One of the most wide spread vegetable oils in Russia is mustard oil. Possible ways of using mustard oil as fuel for a diesel engine are considered. An opportunity of improving characteristics of exhaust gases toxicity by using these mixtures as a fuel for automobile and tractor diesel engines is demonstrated.


2014 ◽  
Vol 592-594 ◽  
pp. 1580-1584
Author(s):  
A. Zahir Hussain ◽  
Sumit Raj ◽  
R. Anand

An experimental investigation on the performance, emission and combustion characteristics of single cylinder water cooled diesel test engine was carried out at a constant speed of 1500 rpm with processed waste engine oil. The experiments were carried out at different load conditions from no load to 110% load. To compare the results obtained the baseline readings were taken with diesel. The standard operating condition of the engine was 200 bar injection pressure and 23° before Top Dead Center (bTDC). For processed Waste Engine Oil (pWEO) fuel operation the Brake Thermal Efficiency (BTE) obtained at rated load point was 32.18 %. at 100 % load and pWEO gave a peak pressure of 64.46 bar compared to 66.12 bar for diesel. There was a 5 % reduction in the Nitrous Oxide (NO) emission with pWEO. Heat release rate (HRR) and exhaust gas temperature showed considerable reduction with pWEO fuel operation.


Author(s):  
Толмачев ◽  
D. Tolmachev ◽  
Голубенко ◽  
Natalya Golubenko

The article describes some of chemmotology processes in systems: engine oil – elements of internal combustion engines. Motor oil is regarded as an important element in the construction of an internal combustion engine, and it is necessary to make quantitative description of its condition which changing over time for its operability forecasting. In connection with the increasing number of vehicles with gas engines, the topics of necessity of special engine oils use for the gas internal combustion engine and of monitoring of their quality indicators are mentioned


2021 ◽  
Vol 05 ◽  
pp. 12-14
Author(s):  
A.L. Chudinovskikh ◽  
◽  
D.V. Boykov ◽  

Changes in the design and parameters of modern internal combustion engines in order to achieve high economic, environmental, and other indicators lead to a tightening of the operating conditions of engine oil. Engine oil is an integral part of the internal combustion engine and from the point of view of modern views is positioned as an engine part. Currently, all internal combustion engine oils are generally tested, classified and evaluated according to generally accepted criteria and parameters. Without specifying and analyzing a whole layer of materials related to research, testing, evaluation of motor oils accumulated over more than a century, the article briefly discusses some general aspects of the classification and evaluation of oils for automotive equipment in leading foreign countries and the Russian Federation.


Sign in / Sign up

Export Citation Format

Share Document