scholarly journals High Power Normally-OFF GaN/AlGaN HEMT with Regrown p Type GaN

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6098
Author(s):  
Gwen Rolland ◽  
Christophe Rodriguez ◽  
Guillaume Gommé ◽  
Abderrahim Boucherif ◽  
Ahmed Chakroun ◽  
...  

In this paper is presented a Normally-OFF GaN HEMT (High Electron Mobility Transistor) device using p-doped GaN barrier layer regrown by CBE (Chemical Beam Epitaxy). The impact of the p doping on the device performance is investigated using TCAD simulator (Silvaco/Atlas). With 4E17 cm−3 p doping, a Vth of 1.5 V is achieved. Four terminal breakdowns of the fabricated device are investigated, and the origin of the device failure is identified.

2015 ◽  
Vol 764-765 ◽  
pp. 515-520
Author(s):  
Chia Lin Chen ◽  
Chih Huan Fang ◽  
Yuan Chao Niu ◽  
Yaow Ming Chen

The objective of this paper is to evaluate the impact of the parasitic capacitor to the Gallium-Nitride (GaN) based high-electron-mobility transistor (HEMT). Because of the high switching frequency operation, the parasitic inductor has caught a lot of attention when the GaN HEMT is applied in the high power applications. However, the impact of parasitic capacitor to the GaN HEMT is not discussed in literatures. A prototype circuit is built and tested to evaluate the impacts of parasitic capacitor to the GaN HEMT performance. The results show that the parasitic capacitor can induce voltage spike and damage the GaN HEMT.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 353 ◽  
Author(s):  
Giovanni Crupi ◽  
Antonio Raffo ◽  
Valeria Vadalà ◽  
Giorgio Vannini ◽  
Alina Caddemi

The aim of this feature article is to provide a deep insight into the origin of the kink effects affecting the output reflection coefficient (S22) and the short-circuit current-gain (h21) of solid-state electronic devices. To gain a clear and comprehensive understanding of how these anomalous phenomena impact device performance, the kink effects in S22 and h21 are thoroughly analyzed over a broad range of bias and temperature conditions. The analysis is accomplished using high-frequency scattering (S-) parameters measured on a gallium-nitride (GaN) high electron-mobility transistor (HEMT). The experiments show that the kink effects might become more or less severe depending on the bias and temperature conditions. By using a GaN HEMT equivalent-circuit model, the experimental results are analyzed and interpreted in terms of the circuit elements to investigate the origin of the kink effects and their dependence on the operating condition. This empirical analysis provides valuable information, simply achievable by conventional instrumentation, that can be used not only by GaN foundries to optimize the technology processes and, as a consequence, device performance, but also by designers that need to face out with the pronounced kink effects of this amazing technology.


2019 ◽  
Vol 33 (18) ◽  
pp. 1950190
Author(s):  
Hai Li Wang ◽  
Peng Yang ◽  
Kun Xu ◽  
Xiang Yang Duan ◽  
Shu Xiang Sun

In this paper, we investigated the impact of thickness and mole fraction AlInGaN back barrier on the DC performance of AlGaN/GaN high electron mobility transistors (HEMTs) by numerical simulation. The simulations are performed using the hydrodynamic transport model (HD). The simulation results indicated that an inserted AlInGaN back barrier with increasing thickness and mole fraction could effectively confine the electron in the channel, resulting in a significant improvement of the channel current and transconductance. Additionally, the variation of conduction band offset and the increase of total number electron in the channel led to the threshold voltage moving toward a more negative value.


2019 ◽  
Vol 11 (31) ◽  
pp. 3981-3986 ◽  
Author(s):  
Lei Zhao ◽  
Xinsheng Liu ◽  
Bin Miao ◽  
Zhiqi Gu ◽  
Jin Wang ◽  
...  

In this study, we propose a differential extended gate (DEG)-AlGaN/GaN high electron mobility transistor (HEMT) sensor to detect ionic pollutants in solution.


2018 ◽  
Vol 913 ◽  
pp. 870-875 ◽  
Author(s):  
Hui Wang ◽  
Ling Li Jiang ◽  
Ning Wang ◽  
Hong Yu Yu ◽  
Xin Peng Lin

In this work, a charge storage based enhancement mode (E-mode) AlGaN/GaN high electron mobility transistor (HEMT) is proposed and studied. A stacked gate dielectrics, consisting of a tunnel oxide, a charge trap layer and a blocking oxide are applied in the HEMT structure. The E-mode can be realized by negative charge storage within the charge trap layer during the programming process. The impact of the programming condition and the thickness of the dielectrics on the threshold voltage (Vth) are simulated systematically. It is found that the Vth increases with the increasing programming voltage and time due to the increase of the storage charge. Under proper programming condition, the Vth can be increased to more than 2 V. Moreover, It is also found that the Vth increases with the decrease of the thickness of the dielectrics. In addition, it is found that the breakdown voltage of such HEMT can be adjusted by varying the gate dielectric stacks.


RSC Advances ◽  
2017 ◽  
Vol 7 (88) ◽  
pp. 55835-55838 ◽  
Author(s):  
Xiangzhen Ding ◽  
Bin Miao ◽  
Zhiqi Gu ◽  
Baojun Wu ◽  
Yimin Hu ◽  
...  

An extended gate-AlGaN/GaN high electron mobility transistor (EG-AlGaN/GaN HEMT) with a high sensitivity for bioassay has been developed.


RSC Advances ◽  
2019 ◽  
Vol 9 (27) ◽  
pp. 15341-15349 ◽  
Author(s):  
Zhiqi Gu ◽  
Jin Wang ◽  
Bin Miao ◽  
Lei Zhao ◽  
Xinsheng Liu ◽  
...  

We propose a highly efficient surface modification strategy on an AlGaN/GaN high electron mobility transistor, where ethanolamine was utilized to functionalize the surface of GaN and provided amphoteric amine groups for bioassay application.


Sign in / Sign up

Export Citation Format

Share Document