scholarly journals Determination of Relationship between Higher Heating Value and Atomic Ratio of Hydrogen to Carbon in Spent Coffee Grounds by Hydrothermal Carbonization

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6551
Author(s):  
Jung Eun Park ◽  
Gi Bbum Lee ◽  
Cheol Jin Jeong ◽  
Ho Kim ◽  
Choong Gon Kim

This study was a preliminary investigation of solid recovered fuel production from spent coffee grounds using the hydrothermal carbonization (HTC) technique. The spent coffee grounds (SCGs) were subjected to HTC at 170 to 250 °C. The biochar was characterized by proximate analysis, ultimate analysis, capillary suction time, time to filter, suspended solids, and particle size distribution. The biochar yields decreased with increasing HTC temperature and time. However, the higher heating value (HHV) of biochar increased with the HTC temperature and time. The H/C slop relative to the O/C atomic rate of spent coffee grounds was 0.10 with low decarboxylation selectivity. Considering the HHV of biochar and dehydration capacity depend on ratio of H/C vs. O/C, the optimum reaction temperature of HTC was 200 °C, and the biochar from SCGs is an attractive biochar.

2021 ◽  
Vol 11 (14) ◽  
pp. 6542
Author(s):  
Hyeok-Jin Kim ◽  
Sea-Cheon Oh

With increasing coffee production and consumption, the amount of coffee by-product is also increasing. Therefore, there is growing worldwide interest in using these by-products as a renewable energy source. In this study, hydrothermal carbonization was conducted with subcritical water to improve the fuel characteristics of spent coffee grounds. The water content was varied, with the mass ratio between the dry sample and water set to 1:1.5 and 1:4. The reaction temperature was increased by 10 °C from 180 to 250 °C. The fuel and thermal characteristics of the reaction products were investigated through mass and energy yields, elemental, proximate, and heating value analysis. In analysis results, as the reaction temperature increased, carbon and fixed carbon content increased, and oxygen and volatile matter content decreased, resulting in an increase in calorific value. Thermogravimetric analysis, derivative thermogravimetry, and Fourier transform infrared spectroscopy were also conducted on the reaction products. To investigate their storage characteristics, chemical oxygen demand analysis was conducted. The results showed that with increasing reaction temperature, the fixed carbon content and heating value increased; also, the fuel characteristics became similar to those of coal. In addition, the reaction products became more hydrophobic as the reaction temperature increased.


2018 ◽  
Vol 37 (1) ◽  
pp. 544-557 ◽  
Author(s):  
Alejandra Saffe ◽  
Anabel Fernandez ◽  
Germán Mazza ◽  
Rosa Rodriguez

The use of energy from biomass is becoming more common worldwide. This energy source has several benefits that promote its acceptance; it is bio-renewable, non-toxic and biodegradable. To predict its behavior as a fuel during thermal treatment, its characterization is necessary. The experimental determination of ultimate analysis data requires special instrumentation, while proximate analysis data can be obtained easily by using common equipment but, the required time is high. In this work, a methodology is applied based on thermogravimetric analysis, curves deconvolution and empirical correlations for characterizing different regional agro-industrial wastes to determine the high heating value, the contents of moisture, volatiles matter, fixed carbon, ash, carbon, hydrogen, oxygen, lignin, cellulose and hemicellulose. The obtained results are similar to those using standard techniques, showing the accuracy of proposed method and its wide application range. This methodology allows to determine the main parameters required for industrial operation in only in one step, saving time.


2013 ◽  
Vol 39 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Michał Wichliński ◽  
Rafał Kobyłecki ◽  
Zbigniew Bis

Abstract This paper presents the results of the investigation associated with the determination of mercury content in Polish hard coal and lignite samples. Those coals are major fuels used for electricity generation in Poland. The results indicated that the average content of mercury in the coal samples was roughly about 100 ng/g. Apart from the determination of the mercury contents a detailed ultimate and proximate analysis of the coal samples was also carried out. The relationships between the mercury content and ash, as well as fixed carbon, volatile matter, sulfur, and high heating value of the coal samples were also established. Furthermore, the effect of coal enrichment was also investigated, and it was found that the enrichment process enabled the removal of up to 75% of the coal mercury from the samples.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2984
Author(s):  
Anna Partridge ◽  
Ekaterina Sermyagina ◽  
Esa Vakkilainen

Upgrading biomass waste streams can improve economics in wood industries by adding value to the process. This work considers use of a hydrothermal carbonization (HTC) process for the residual feedstock after lignin and hemicelluloses extraction. Batch experiments were performed at 200–240 °C temperatures and three hours residence time with an 8:1 biomass to water ratio for two feedstocks: Raw spruce and spruce after lignin extraction. The proximate analysis and heating value showed similar results for both feedstocks, indicating that the thermochemical conversion is not impacted by the removal of lignin and hemicelluloses; the pretreatment processing slightly increases the heating value of the treated feedstock, but the HTC conversion process produces a consistent upgrading trend for both the treated and untreated feedstocks. The energy yield was 9.7 percentage points higher for the treated wood on average across the range temperatures due to the higher mass yield in the treated experiments. The energy densification ratio and the mass yield were strongly correlated with reaction temperature, while the energy yield was not. Lignocellulosic composition of the solid HTC product is mainly affected by HTC treatment, the effect of lignin extraction is negligible.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2360 ◽  
Author(s):  
Minjeong Lee ◽  
Minseok Yang ◽  
Sangki Choi ◽  
Jingyeong Shin ◽  
Chanhyuk Park ◽  
...  

Spent coffee grounds (SCG) are one of the lignocellulosic biomasses that have gained much attention due to their high potential both in valorization and biomethane production. Previous studies have reported single processes that extract either fatty acids/lignin or biogas. In this study, an integrated physicochemical and biological process was investigated, which sequentially recovers lignin, fatty acid methyl esters (FAME) and biogas from the residue of SCG. The determination of optimal conditions for sequential separation was based on central composite design (CCD) and response surface methodology (RSM). Independent variables adopted in this study were reaction temperature (86.1–203.9 °C), concentration of sulfuric acid (0.0–6.4%v/v) and methanol to SCG ratio (1.3–4.7 mL/g). Under determined optimal conditions of 161.0 °C, 3.6% and 4.7 mL/g, lignin and FAME yields were estimated to be 55.5% and 62.4%, respectively. FAME extracted from SCG consisted of 41.7% C16 and 48.16% C18, which makes the extractives appropriate materials to convert into biodiesel. Results from Fourier transform infrared spectroscopy (FT-IR) further support that lignin and FAME extracted from SCG have structures similar to previously reported extractives from other lignocellulosic biomasses. The solid residue remaining after lignin and FAME extraction was anaerobically digested under mesophilic conditions, resulting in a methane yield of 36.0 mL-CH4/g-VSadded. This study is the first to introduce an integrated resource recovery platform capable of valorization of a municipal solid waste stream.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 858 ◽  
Author(s):  
Nepu Saha ◽  
Akbar Saba ◽  
Pretom Saha ◽  
Kyle McGaughy ◽  
Diana Franqui-Villanueva ◽  
...  

Each year the pulp and paper industries generate enormous amounts of effluent treatment sludge. The sludge is made up of various fractions including primary, secondary, deinked, fiber rejects sludge, etc. The goal of this study was to evaluate the fuel properties of the hydrochars produced from various types of paper mill sludges (PMS) at 180 °C, 220 °C, and 260 °C. The hydrochars, as well as the raw feedstocks, were characterized by means of ultimate analysis, proximate analysis, moisture, ash, lignin, sugar, and higher heating value (HHVdaf) measurements. Finally, combustion indices of selected hydrochars were evaluated and compared with bituminous coal. The results showed that HHVdaf of hydrochar produced at 260 °C varied between 11.4 MJ/kg and 31.5 MJ/kg depending on the feedstock. This implies that the fuel application of hydrochar produced from PMS depends on the quality of feedstocks rather than the hydrothermal carbonization (HTC) temperature. The combustion indices also showed that when hydrochars are co-combusted with coal, they have similar combustion indices to that of coal alone. However, based on the energy and ash contents in the produced hydrochars, Primary and Secondary Sludge (PPS2) could be a viable option for co-combustion with coal in an existing coal-fired power plant.


2019 ◽  
Vol 9 (16) ◽  
pp. 3369
Author(s):  
Pereira ◽  
Woodman ◽  
Brahmbhatt ◽  
Chuck

The increasing consumption of coffee worldwide has led to higher amounts of spent coffee grounds (SCG) being produced which are generally disposed of in landfill or used as compost. However, the wide range of molecules present in SCG such as saccharides, lignin, lipids and proteins give this biomass source a large chemical functionality. In this work, SCG were fractionated to separate the components into three separate portions for further valorization; these were hemicellulose-enriched fractions (HEF), lignin-enriched fraction (LEF) and cellulose-enriched fraction (CEF). HEF was effectively used in the growth of the oleaginous yeast Metschnikowia pulcherrima, additionally, the C6 sugars present in this fraction suggests that it can be used in the production of 5-hydroxymethylfurfural (HMF). The LEF had a considerable high heating value (HHV) and would be suitable as a biofuel component for combustion. CEF was efficiently used in the production of HMF as 0.35 g of this product were obtained from 10 g of SCG. Such results demonstrate that SCG can be effectively used in the production of HMF within a biorefinery concept.


2020 ◽  
Vol 857 ◽  
pp. 113663 ◽  
Author(s):  
J. Estrada-Aldrete ◽  
J.M. Hernández-López ◽  
A.M. García-León ◽  
J.M. Peralta-Hernández ◽  
F.J. Cerino-Córdova

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 618
Author(s):  
Vicky Shettigondahalli Ekanthalu ◽  
Satyanarayana Narra ◽  
Jan Sprafke ◽  
Michael Nelles

The high moisture content present in sewage sludge hinders the use of sewage sludge in incineration or energy application. This limitation of moisture present in sewage sludge can be obviated by using the hydrothermal carbonization (HTC) process. In sewage sludge management, the HTC process requires less energy compared to other conventional thermo–chemical management processes. The HTC process produces energy-rich hydrochar products and simultaneously enables phosphorus recovery. This study investigates the influence of organic acids, inorganic acid, and alkali as additives on phosphorus transformation, yield, proximate analysis and the heating value of subsequently produced hydrochar. The analysis includes various process temperatures (200 °C, 220 °C, and 240 °C) in the presence of deionized water, acids (0.1 M and 0.25 M; H2SO4, HCOOH, CH3COOH), and alkali (0.1 M and 0.25 M; NaOH) solutions as feed water. The results show that phosphorus leaching into the process-water, hydrochar yield, proximate analysis, and the heating value of produced hydrochar is pH- and temperature-dependent, and particularly significant in the presence of H2SO4. In contrast, utilization of H2SO4 and NaOH as an additive has a negative influence on the heating value of produced hydrochar.


Sign in / Sign up

Export Citation Format

Share Document