scholarly journals Potential Use of Plant Biomass from Treatment Wetland Systems for Producing Biofuels through a Biocrude Green-Biorefining Platform

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8157
Author(s):  
Marco Antonio Rodriguez-Dominguez ◽  
Patrick Biller ◽  
Pedro N. Carvalho ◽  
Hans Brix ◽  
Carlos Alberto Arias

The potential of using the biomass of four wetland plant species (Iris pseudacorus, Juncus effusus, Phragmites australis and Typha latifolia) grown in treatment wetland systems and under natural conditions were tested to produce high-value materials using hydro-thermal liquefaction (HTL). The results show that the wetland plants biomass is suitable for biocrude and biochar production regardless of the origin. The hydrothermal liquefaction products’ (biocrude, biochar, aqueous and gaseous phase) yields vary according with the specific biomass composition of the species. Furthermore, the results show that the biomass composition can be affected by the growing condition (treatment wetland or natural unpolluted conditions) of the plants. None of the single components seems to have a determinant effect on the biocrude yields, which reached around 30% for all the analyzed plants. On the contrary, the biochar yields seem to be affected by the composition of the biomass, obtaining different yields for the different plant species, with biochar yields values from around 12% to 22%, being that Phragmites australis is the one with the highest average yield. The obtained aqueous phase from the different plant species produces homogeneous compounds for each plant species and each growing environment. The study shows that biomass from treatment wetlands is suitable for biocrude production. The environmental value of this biomass lies on the fact that it is considered a residual product with no aggregated value. The treatment wetland biomass is a potential sustainable source for biofuel production since these plants do not need extra land or nutrients for growing, and the biomass does not compete with other uses, offering new sources for enhancing the bioeconomy concepts.

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 521D-521 ◽  
Author(s):  
Thomas C. Holt ◽  
Brian K. Maynard ◽  
William A. Johnson

We assessed the capacity for nutrient removal of ornamental water garden plants being grown in treatment-production wetland biofilters. Plant biomass, nutrient uptake, tissue nutrient content, and production potential were compared for five popular ornamental water garden plant species: Typha latifolia L., Iris pseudacorus L., Phalaris arundinacea L. `Picta', Canna glauca L., and Colocasia esculenta (L.) Schott. Plants were grown in triplicate 0.3 m2 × 0.3 m, deep gravelbed mesocosms fed with 20N-20P-20K Peter's fertilizer (Scotts-Sierra Horticultural Products Co., Marysville, Ohio) reconstituted to 100 ppm N. After 120 days, mean species total biomass ranged from 1.4 to 5.6 kg·m -2, while producing 105 to 206 divisions per square meter. Growth for Canna and Colocasia was greatest, while Typha produced the most divisions. Mean tissue N and P concentrations ranged from 18 to 29 and 2.1 to 3.0 mg·g -1, respectively. Maximum plant accumulation of 144 g N/m 2 and 15.6 g P/m2 accounted for 70% of the N and 15% of the P supplied by fertilizer. Mean removal of total N and P ranged from 42% to 90% and 18% to 58%, respectively, and was positively correlated with plant biomass. Nutrient removal ability was ranked as Canna = Colocasia > Typha > Iris = Phalaris.


2017 ◽  
Vol 28 (1-2) ◽  
pp. 28-35 ◽  
Author(s):  
B. A. Baranovski

Nowadays, bioecological characteristics of species are the basis for flora and vegetation studying on the different levels. Bioecological characteristics of species is required in process of flora studying on the different levels such as biotopes or phytocenoses, floras of particular areas (floras of ecologically homogeneous habitats), and floras of certain territories. Ramensky scale is the one of first detailed ecological scales on plant species ordination in relation to various environmental factors; it developed in 1938 (Ramensky, 1971). A little later (1941), Pogrebnyak’s scale of forest stands was proposed. Ellenberg’s system developed in 1950 (Ellenberg, 1979) and Tsyganov’s system (Tsyganov, 1975) are best known as the systems of ecological scales on vascular plant species; these systems represent of habitat detection by ecotopic ecomorphs of plant species (phytoindication). Basically, the system proposed by Alexander Lyutsianovich Belgard was the one of first system of plant species that identiified ectomorphs in relation to environmental factors. As early as 1950, Belgard developed the tabulated system of ecomorphs using the Latin ecomorphs abbreviation; he also used the terminology proposed in the late 19th century by Dekandol (1956) and Warming (1903), as well as terminology of other authors. The article analyzes the features of Belgard’s system of ecomorphs on vascular plants. It has certain significance and advantages over other systems of ecomorphs. The use of abbreviated Latin names of ecomorphs in tabular form enables the use shortened form of ones. In the working scheme of Belgard’s system of ecomorphs relation of species to environmental factors are represented in the abbreviated Latin alphabetic version (Belgard, 1950). Combined into table, the ecomorphic analysis of plant species within association (ecological certification of species), biotope or area site (water area) gives an explicit pattern on ecological structure of flora within surveyed community, biotope or landscape, and on environmental conditions. Development and application by Belgrard the cenomorphs as «species’ adaptation to phytocenosis as a whole» were completely new in the development of systems of ecomorphs and, in this connection, different coenomorphs were distinguished. Like any concept, the system of ecomorphs by Belgard has the possibility and necessity to be developed and added. Long-time researches and analysis of literature sources allow to propose a new coenomorph in the context of Belgard’s system of ecomorphs development: silvomargoant (species of forest margin, from the Latin words margo – edge, boundary (Dvoretsky, 1976), margo – margin, ad margins silvarum – along the deciduous forest margins). As an example of ecomorphic characterization of species according to the system of ecomorphs by Belgard (when the abbreviated Latin ecomorph names are used in tabular form and the proposed cenomorph is used), it was given the part of the table on vascular plants ecomorphs in the National Nature Park «Orelsky» (Baranovsky et al). The Belgard’s system of ecomorphs is particularly convenient and can be successfully applied to data processing in the ecological analysis of the flora on wide areas with significant species richness, and the proposed ecomorph will be another necessary element in the Belgard’s system of ecomorphs. 


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 451
Author(s):  
Moritz von Cossel ◽  
Lorena Agra Pereira ◽  
Iris Lewandowski

The global demand for plant biomass to provide bioenergy and heat is continuously increasing because of a growing interest among many industrialized and developing countries towards climate sound and renewable energy supply. The exacerbation of land-use conflicts proliferates social-ecological demands on future bioenergy cropping systems. Perennial herbaceous wild plant mixtures (WPMs) represent an approach to providing social-ecologically more sustainably produced biogas substrate that has gained increasing public and political interest only in recent years. The focus of this study lies on three perennial wild plant species (WPS) that usually dominate the biomass yield performance of WPM cultivation. These WPS were compared with established biogas crops in terms of their substrate-specific methane yield (SMY) and lignocellulosic composition. The plant samples were investigated in a small-scale mesophilic discontinuous biogas batch test for determining the SMY. All WPS were found to have significantly lower SMY (241.5–248.5 lN kgVS−1) than maize (337.5 lN kgVS−1). This was attributed to higher contents of lignin (9.7–12.8% of dry matter) as well as lower contents of hemicellulose (9.9–11.5% of dry matter) in the WPS. Only minor, non-significant differences to cup plant and Virginia mallow were observed. Thus, when planning WPS as a diversification measure in biogas cropping systems, their lower SMY should be considered.


Oecologia ◽  
2021 ◽  
Vol 195 (1) ◽  
pp. 213-223
Author(s):  
Mark A. Lee ◽  
Grace Burger ◽  
Emma R. Green ◽  
Pepijn W. Kooij

AbstractPlant and animal community composition changes at higher elevations on mountains. Plant and animal species richness generally declines with elevation, but the shape of the relationship differs between taxa. There are several proposed mechanisms, including the productivity hypotheses; that declines in available plant biomass confers fewer resources to consumers, thus supporting fewer species. We investigated resource availability as we ascended three aspects of Helvellyn mountain, UK, measuring several plant nutritive metrics, plant species richness and biomass. We observed a linear decline in plant species richness as we ascended the mountain but there was a unimodal relationship between plant biomass and elevation. Generally, the highest biomass values at mid-elevations were associated with the lowest nutritive values, except mineral contents which declined with elevation. Intra-specific and inter-specific increases in nutritive values nearer the top and bottom of the mountain indicated that physiological, phenological and compositional mechanisms may have played a role. The shape of the relationship between resource availability and elevation was different depending on the metric. Many consumers actively select or avoid plants based on their nutritive values and the abundances of consumer taxa vary in their relationships with elevation. Consideration of multiple nutritive metrics and of the nutritional requirements of the consumer may provide a greater understanding of changes to plant and animal communities at higher elevations. We propose a novel hypothesis for explaining elevational diversity gradients, which warrants further study; the ‘nutritional complexity hypothesis’, where consumer species coexist due to greater variation in the nutritional chemistry of plants.


2007 ◽  
Vol 55 (1-2) ◽  
pp. 121-128 ◽  
Author(s):  
A.K. Karunarathna ◽  
N. Tanaka ◽  
K.B.S.N. Jinadasa

Coconut dust, which is used intensively in horticultural applications, was tested as an external organic additive in a series of laboratory-scale subsurface-flow constructed wetlands planted with Phragmites australis. The systems were fed with a mixture of NO−3-N, NH+4-N, and SRP in tap water to simulate high nutrient loads. In the absence of plants, TN removal efficiency was 66%, and the efficiency increased to >80% in the microcosm wetlands. TN and NO−3 removal efficiencies were marginally increased by coconut-dust treatment in comparison with sand-bed microcosms. Analysis by ANOVA showed that the TN removal from a coconut dust-supplemented sand-bed microcosm was significantly different from a sand-bed microcosm (0.0437 < p<0.05). All the systems showed an equal capacity to treat NH+4 nitrogen under low influent concentration levels. Phosphorus removal efficiencies were >98% in all three systems, and a difference between planted and unplanted systems was not observed. Shoot height and shoot densities of P. australis grown in the coconut dust-supplemented medium were significantly higher than those grown in the sand-bed medium. The difference in P. australis growth in response to the coconut dust addition revealed that the added material has the potential to create favourable conditions for plant growth.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1750
Author(s):  
María Pilar Bernal ◽  
Donatella Grippi ◽  
Rafael Clemente

Phytomanagement of trace element-contaminated soils combines sustainable soil remediation with the use of plant biomass for different applications. Consequently, phytostabilization using plant species useful for bioenergy production has recently received increasing attention. However, the water requirement of most of these species is a limitation for their use under Mediterranean climatic conditions. In this work, eight plant species growing naturally in mine soils contaminated by trace elements were evaluated for their use as bioenergy crops using thermochemical (combustion) and biochemical (anaerobic digestion) methods. The higher heating values of the biomass of the plants studied were all within a narrow range (16.03–18.75 MJ kg−1), while their biochemical methane potentials ranged from 86.0 to 227.4 mL CH4 (g VS)−1. The anaerobic degradation was not influenced by the presence of trace elements in the plants, but the mineral content (mainly Na) negatively affected the potential thermal energy released by combustion (HHV). The highest annual energy yields from biogas or combustion could be obtained by the cultivation of Phragmites australis and Arundo donax, followed by Piptatherum miliaceum. Both options can be considered to be suitable final destinations for the biomass obtained in the phytostabilization of trace element-contaminated soils and may contribute to the implementation of these remediation techniques in Mediterranean areas.


2021 ◽  
Vol 5 (520) ◽  
pp. 175-187
Author(s):  
R. V. Lohosha ◽  
◽  
I. A. Semchuk ◽  

The article is aimed at defining the priorities for the development of the biofuel market in Ukraine to ensure the energy security of the country and satisfy the country’s energy needs. Prospects for the bioenergy sector of the economy in the world will be determined primarily by the optimization of national policies in the matrix of multifarious criteria. The place of the Ukrainian model is highly likely to be determined, on the one hand, by the development of the national market, on the other hand, by the production of raw materials for world biofuel markets. At the same time, this market and production in Ukraine remains only a potentially promising model that requires a scientific substantiation for its efficiency. As a result of the study, it is specified that the bioenergy industry has serious limitations and problems of economic nature that require scientific substantiation. After analyzing the limitations and prospects of the industry development in Ukraine at the level of agricultural enterprises that could deploy biofuel production, it should be emphasized that: 1) there is currently no biofuel market in Ukraine: there is no significant production, hence the proposal still remains unformed; there are no agents (firms, enterprises) of the market that would form the established demand; the necessary norms, institutions, mechanisms of the representative market have not been developed; 2) there is no successful experience of such a business both in Ukraine in general and in agricultural enterprises in particular. From here, as well as taking into account the above-mentioned aspects, the attractiveness of this business, including investment, needs to be justified. Enterprises of this group will face funding problems, as well as technical and technological support problems. Therefore, special careful economic substantiation of the market efficiency model and business processes is required; 3) because of these reasons, the task of scientific substantiation of the model of efficient management of this business becomes highly topical.


Sign in / Sign up

Export Citation Format

Share Document