scholarly journals The Efficiency of Obtaining Electricity and Heat from the Photovoltaic Module under Different Irradiance Conditions

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8271
Author(s):  
Mariusz T. Sarniak

This paper proposes a modification to the design of a standard PV module by enclosing the skeleton space and using forced ventilation. The purpose of this research was to develop a method for calculating the amount of heat gained during PV module cooling. A simplifying assumption was to omit the electrical energy consumed by the fans forcing the airflow. For testing at low irradiance, a prototype halogen radiation simulator of our own design was used, which is not a standardized radiation source used for testing PV modules. Two measurements were also made under natural, stable solar radiation. The modified PV module was tested for three ventilation rates and compared with the results obtained for the standard PV module. In all tested cases, an increase in electrical efficiency of about 2% was observed with increasing radiation intensity. The thermal efficiency decreased by about 5% in the analyzed cases and the highest value of 10.47% was obtained for the highest value of cooling airflow rate. In conclusion, the study results represent a certain compromise: an increase in electrical efficiency with a simultaneous decrease in thermal efficiency.

Photovoltaic (PV) module is one of the simplest technologies to convert the solar energy into the useful electrical energy. In the present paper, an attempt has been made to develop a simplified analytical expression for solar cell temperature and solar cell electrical efficiency of opaque and semi-transparent photovoltaic module in the terms of design and climatic parameters. Based on the energy balance of opaque and semi-transparent PV module, the performance parameters, namely, solar cell temperature, solar cell electrical efficiency, module efficiency and electrical power output have been evaluated for a typical clear day of May month of New Delhi climatic condition data taken from IMD (Indian Meteorological Department), Pune, India. The numerical simulations have been made on the MATLAB software. Based on the numerical computation, the effect of back cover opaque and semitransparent tedlar of module on the performance parameters has been investigated. From the results and discussion, it is found that the performance of photovoltaic module is very sensitive to the module temperature. Further, it is concluded that the semi-transparent photovoltaic module is more efficient than the opaque one. Thus, by the application of semi-transparent PV module in the design of stand-alone and rooftop PV system, the overall energy requirement and performance can be improved for same occupied area.


2018 ◽  
Vol 12 (2) ◽  
pp. 98 ◽  
Author(s):  
Jalaluddin . ◽  
Baharuddin Mire

Actual performance of photovoltaic module with solar tracking is presented. Solar radiation can be converted into electrical energy using photovoltaic (PV) modules. Performance of polycristalline silicon PV modules with and without solar tracking are investigated experimentally. The PV module with dimension 698 x 518 x 25 mm has maximum power and voltage is 45 Watt and 18 Volt respectively. Based on the experiment data, it is concluded that the performance of PV module with solar tracking increases in the morning and afternoon compared with that of fixed PV module. It increases about 18 % in the morning from 10:00 to 12:00 and in the afternoon from 13:30 to 14:00 (local time). This study also shows the daily performance characteristic of the two PV modules. Using PV module with solar tracking provides a better performance than fixed PV module. 


2006 ◽  
Vol 128 (3) ◽  
pp. 349-353 ◽  
Author(s):  
A. T. Naveed ◽  
E. C. Kang ◽  
E. J. Lee

The electrical power generated by a polycrystalline silicon photovoltaic (PV) module mounted on an unglazed transpired solar collector (UTC) has been studied and compared to that of a PV module without UTC for a quantitative analysis of electrical output and its role in reducing the simple payback periods of photovoltaic electrical systems. A 75W polycrystalline silicon PV module was fixed on an UTC in front of the ventilation fan, and effectiveness of cooling by means of the forced ventilation at the rate of 160CFM was monitored. The temperature reduction under forced ventilation was in the range of 3-9°C with a 5% recovery in the electrical output power on a typical day of the month of February 2005. The simulated and measured electrical power outputs are in reasonable agreement with root-mean-square error of 2.40. The life cycle assessment of a hypothetical PV system located at Daejeon, South Korea and consisting of 3kW PV modules fixed on a 50m2 UTC shows that with a possible reduction of 3-9°C in the operating temperatures, the system requires three 75W fewer PV modules. The simple payback period of PV system is reduced from 23yearsto15years when integrated into an UTC air heating system.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 85 ◽  
Author(s):  
Jaemin Kim ◽  
Sangmu Bae ◽  
Yongdong Yu ◽  
Yujin Nam

The electrical efficiency and durability of a photovoltaic (PV) cell degrades as its temperature increases. Accordingly, there have been continued efforts to control the cell temperature by cooling the PV module. Generally, passive PV cooling using heat sinks attached on the back of the PV module can improve the electrical efficiency. However, few experimental studies have evaluated the effect of the heat sink shape on PV cooling. Therefore, this study proposed a passive cooling technology using meshes made of iron and aluminum, and performed indoor tests using a solar simulator to analyze the cooling performance. The experimental results demonstrated that iron and aluminum meshes reduced the PV module temperature by approximately 4.35 °C and 6.56 °C, respectively. Additionally, numerical studies were performed using a computational fluid dynamics (CFD) simulation to compare the cooling fins and meshes. The numerical results showed that the cooling fins exhibited a better cooling performance than the metal mesh. However, meshes can be mass-produced and have a high structural stability against wind loads. Meshes are more likely be applied to PV systems than cooling fins if adhesion were improved.


2017 ◽  
Vol 730 ◽  
pp. 563-568 ◽  
Author(s):  
Atthakorn Thongtha ◽  
Hoy Yen Chan ◽  
Paisit Luangjok

This study investigated the application of phase change material and fins into photovoltaic panel. The experimental design was divided into 2 cases: conventional photovoltaic and photovoltaic with phase change material and fins. The thermal performance and electrical efficiency was tested under the solar radiation simulator between 500 and 1000 W/m2. The insolation intensity was tested by an incident-light photometer. The power of the nine halogen lamps was controlled by a simple voltage control device. It was found that temperature of normal PV module is constant after the tested time of 20 minutes. The temperatures of PV module with phase change material and fins were lower than a normal PV module throughout the testing duration. Approximately 2-6% of photovoltaic module temperatures have decreased and this have improved the electrical efficiency of about 1-4%. This indicated the use of phase change material and fins is able to decrease the photovoltaic module temperature and thus increase the efficiency of photovoltaic module cooling.


2022 ◽  
Vol 961 (1) ◽  
pp. 012065
Author(s):  
“Miqdam T Chaichan ◽  
Muhaned A H Zaidi ◽  
Hussein A. Kazem ◽  
K. Sopian

Abstract Today, photovoltaic modules have become accepted by the public and scientists in the production of clean electricity and as a possible alternative to electricity produced from fossil fuels. These modules suffer from a deterioration in their electrical efficiency as a result of their high temperature. Several researchers have proposed the use of high-efficiency hybrid photovoltaic (PV/T) systems that can cool PV modules and also produce hot water. Improving the PV modules’ electrical efficiency increases the investment attraction and commercialization of this technology. The possibility of restoring the electrical efficiency of the photovoltaic panel that was lost due to its high temperature was investigated in this study. A PV/T system designed to operate with a paraffin-filled thermal tank attached to the PV module was used. Inside the paraffin is a heat exchanger that circulates inside a nanofluid. This design is adopted to cool down the PV module temperature. The study was carried out in the climatic conditions of the month of May in the city of Baghdad - Iraq. The proposed PV/T system’s electrical efficiency was compared with similar systems from the literature. The proposed system has achieved an obvious enhancement as its electrical efficiency was 13.7%.


2021 ◽  
Vol 13 (11) ◽  
pp. 6364
Author(s):  
June Raymond L. Mariano ◽  
Yun-Chuan Lin ◽  
Mingyu Liao ◽  
Herchang Ay

Photovoltaic (PV) systems directly convert solar energy into electricity and researchers are taking into consideration the design of photovoltaic cell interconnections to form a photovoltaic module that maximizes solar irradiance. The purpose of this study is to evaluate the cell spacing effect of light diffusion on output power. In this work, the light absorption of solar PV cells in a module with three different cell spacings was studied. An optical engineering software program was used to analyze the reflecting light on the backsheet of the solar PV module towards the solar cell with varied internal cell spacing of 2 mm, 5 mm, and 8 mm. Then, assessments were performed under standard test conditions to investigate the power output of the PV modules. The results of the study show that the module with an internal cell spacing of 8 mm generated more power than 5 mm and 2 mm. Conversely, internal cell spacing from 2 mm to 5 mm revealed a greater increase of power output on the solar PV module compared to 5 mm to 8 mm. Furthermore, based on the simulation and experiment, internal cell spacing variation showed that the power output of a solar PV module can increase its potential to produce more power from the diffuse reflectance of light.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Abhijit V. Padgavhankar ◽  
Sharad W. Mohod

The electric power supplied by photovoltaic module depends on light intensity and temperature. It is necessary to control the operating point to draw the maximum power of photovoltaic module. This paper presents the design and implementation of digital power converters using Proteus software. Its aim is to enhance student’s learning for virtual system modeling and to simulate in software for PIC microcontroller along with the hardware design. The buck and boost converters are designed to interface with the renewable energy source that is PV module. PIC microcontroller is used as a digital controller, which senses the PV electric signal for maximum power using sensors and output voltage of the dc-dc converter and according to that switching pulse is generated for the switching of MOSFET. The implementation of proposed system is based on learning platform of Proteus virtual system modeling (VSM) and the experimental results are presented.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 163
Author(s):  
Jong Rok Lim ◽  
Woo Gyun Shin ◽  
Chung Geun Lee ◽  
Yong Gyu Lee ◽  
Young Chul Ju ◽  
...  

In recent years, various types of installations such as floating photovoltaic (PV) and agri-voltaic systems, and BIPV (building integrated photovoltaic system) have been implemented in PV systems and, accordingly, there is a growing demand for new PV designs and materials. In particular, in order to install a PV module in a building, it is important to reduce the weight of the module. The PV module in which low-iron, tempered glass is applied to the front surface, which is generally used, has excellent electrical output and reliability characteristics; however, it is heavy. In order to reduce the weight of the PV module, it is necessary to use a film or plastic-based material, as opposed to low-iron, tempered glass, on the front surface. However, if a material other than glass is used on the front of the PV module, various problems such as reduced electrical output and reduced reliability may occur. Therefore, in this paper, a PV module using a film instead of glass as the front surface was fabricated, and a characteristic analysis and reliability test were conducted. First, the transmittance and UV characteristics of each material were tested, and one-cell and 24-cell PV modules were fabricated and tested for electrical output and reliability. From the results, it was found that the transmittance and UV characteristics of the front material were excellent. In addition, the electrical output and reliability test results confirmed that the front-surface film was appropriate for use in a PV module.


Author(s):  
Alexey Dragunov ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Pavel Kirillov ◽  
Romney Duffey

It is well known that the electrical-power generation is the key factor for advances in any other industries, agriculture and level of living. In general, electrical energy can be generated by: 1) non-renewable-energy sources such as coal, natural gas, oil, and nuclear; and 2) renewable-energy sources such as hydro, wind, solar, biomass, geothermal and marine. However, the main sources for electrical-energy generation are: 1) thermal - primary coal and secondary natural gas; 2) “large” hydro and 3) nuclear. The rest of the energy sources might have visible impact just in some countries. Modern advanced thermal power plants have reached very high thermal efficiencies (55–62%). In spite of that they are still the largest emitters of carbon dioxide into atmosphere. Due to that, reliable non-fossil-fuel energy generation, such as nuclear power, becomes more and more attractive. However, current Nuclear Power Plants (NPPs) are way behind by thermal efficiency (30–42%) compared to that of advanced thermal power plants. Therefore, it is important to consider various ways to enhance thermal efficiency of NPPs. The paper presents comparison of thermodynamic cycles and layouts of modern NPPs and discusses ways to improve their thermal efficiencies.


Sign in / Sign up

Export Citation Format

Share Document