scholarly journals Energy Recovering Using Regenerative Braking in Diesel–Electric Passenger Trains: Economical and Technical Analysis of Fuel Savings and GHG Emission Reductions

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 37
Author(s):  
Ahmad Fayad ◽  
Hussein Ibrahim ◽  
Adrian Ilinca ◽  
Sasan Sattarpanah Karganroudi ◽  
Mohamad Issa

Rail transport, specifically diesel–electric trains, faces fundamental challenges in reducing fuel consumption to improve financial performance and reduce GHG emissions. One solution to improve energy efficiency is the electric brake regenerative technique. This technique was first applied on electric trains several years ago, but it is still considered to improve diesel–electric trains efficiency. Numerous parameters influence the detailed estimation of brake regenerative technique performance, which makes this process particularly difficult. This paper proposes a simplified energetic approach for a diesel–electric train with different storage systems to assess these performances. The feasibility and profitability of using a brake regenerative system depend on the quantity of energy that can be recuperated and stored during the train’s full and partial stop. Based on a simplified energetic calculation and cost estimation, we present a comprehensive and realistic calculation to evaluate ROI, net annual revenues, and GHG emission reduction. The feasibility of the solution is studied for different train journeys, and the most significant parameters affecting the impact of using this technique are identified. In addition, we study the influence of electric storage devices and low temperatures. The proposed method is validated using experimental results available in the literature showing that this technique resulted in annual energy savings of 3400 MWh for 34 trains, worth USD 425,000 in fuel savings.

1978 ◽  
Vol 3 (2) ◽  
pp. 16-27 ◽  
Author(s):  
Samuel I. Doctors ◽  
Liam Fahey ◽  
G. Richard Patton

This research examines the impact of the severe energy/weather conditions during the Winter 1976–77 on smaller manufacturers in Western Pennsylvania. It was found that size of firm, energy intensity and extent of energy curtailment were not related (statistically) to the kind and extent of firms' energy conservation programs and/or the nature of the managerial response to the above mentioned conditions. The sample firms had made few major commitments to improve energy efficiency. Lack of capital resources and a perception that energy savings would not significantly affect profitability emerge as major inhibiting factors to investment in energy conservation.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4959
Author(s):  
Jarosław Artyszuk ◽  
Paweł Zalewski

The International Maritime Organization adopted a strategy to reduce the total annual GHG emissions from international shipping by at least 50% by 2050, compared to 2008 levels. The European Union proposed an even farther reaching transformation: the European Commission adopted a set of proposals to make the EU’s transport policies fit for reducing net greenhouse gas emissions by at least 55% by 2030, compared to 1990 levels. Therefore, all industrial actions in line and consistent with these strategies are essential. One of such activities may be a gradual transition from the most common independent controls of transport ships’ thrusters, propellers, and rudders to an integrated, power optimized, 3 degrees of freedom joystick control. In this paper, the full mission bridge simulator (FMBS) research on potential energy savings and, consequently, a GHG emission reduction, while steering a RoPax twin-screw ferry equipped with bow thrusters by a joystick control, is presented. The task of navigators engaged in the research was to steer the vessel either via classic engine, rudder, and thruster levers or via a joystick while (1) following the predefined straight track, (2) rotating at the turning area, and (3), finally, crabbing (moving sideways) until stopping at the quay fenders. The conclusions are that energy savings of approximately 10% can be expected for berthing manoeuvres controlled by a joystick, compared to independent actuators’ controls. These conclusions have been drawn from a statistical analysis of the ship’s energy consumption during typical manoeuvring phases of 18 berthing operations performed in FMBS.


2018 ◽  
Vol 10 (10) ◽  
pp. 3568 ◽  
Author(s):  
Claudio Carnevale ◽  
Fabrizio Ferrari ◽  
Giorgio Guariso ◽  
Giuseppe Maffeis ◽  
Enrico Turrini ◽  
...  

Air quality plans must be demonstrated to be economically sustainable and environmentally effective. This paper presents a full cost–benefit and environmental analysis of a large regional air quality plan involving several different actions covering a large spectrum of fields, from domestic heating to passenger and freight transport, from electricity generation to agriculture. The impact of each action is analyzed looking at the possible energy savings, greenhouse gases (GHG) emission reductions, the improvement in air quality, and the consequent decrease in external costs, namely the reduced impact on population health. The analysis is performed by applying a flexible and fast computer tool (RIAT+) that allows for a rapid simulation of different pollutant emission scenario, to assess different air quality indices (AQIs) over a regional scale domain. The results show that, in most cases, the economic savings exceed the implementation costs and thus that these actions can be introduced in air quality plans for the domain under study. The reduced health and climate costs, though relevant in absolute terms, are, in general, only a fraction of the economic benefits of energy savings. This is not true for the measures acting on improvements in electricity generation, since a reduction in power plant emissions (generally with high stacks, far from populated areas) does not significantly impact the air quality inside the region. A shift in energy production to renewable sources can instead provide noticeable effects on GHG emissions. This research raises some interesting and general questions about the adequacy of the methodologies applied to attribute costs (and benefits) to actions, improving a variety of sectors that are different from the one in which the measures are applied here.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Huacai Liu ◽  
Xiuli Yin ◽  
Chuangzhi Wu

There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Michael Ayeah Israel ◽  
Joseph Amikuzuno ◽  
Gideon Danso-Abbeam

Abstract Background The adoption of climate-smart agricultural (CSA) practices is expected to improve farmers’ adaptation to climate change and also increase yields while simultaneously curbing greenhouse gas (GHG) emissions. This paper explores the determinants of smallholder farmers’ participation in GHG-emitting activities. It also estimates the impact of CSA activities on reducing GHG emissions. Methods The findings are based on survey data obtained from 350 smallholder farmers in the East Gonja district of Northern Ghana. We adopted the generalized Poisson regression model in identifying factors influencing farmers’ participation in the GHG emission practices and inverse-probability-weighted regression adjustment (IPWRA) to estimate the impact of CSA adoption on GHG emissions. Results Most farming households engaged in at least one emission activity. The findings of the generalized Poisson model found that wealthier households, higher education, and households with access to extension services were less likely to participate in GHG emission activities. There was also evidence that CSA adoption significantly reduces GHG emissions. Conclusion Advocacy in CSA adoption could be a necessary condition for environmental protection through the reduction of GHG emissions.


2018 ◽  
Vol 6 (4) ◽  
pp. 306-310 ◽  
Author(s):  
Ivan Binev

The report analyzes the results of the implemented measures to improve energy efficiency in Vasil Karagiozov High school of Yambol, Bulgaria. Energy savings are determined by measuring and/or calculating energy consumption with previously adopted baseline levels, implementing a measure or program to improve energy efficiency by providing normalized corrections corresponding to the impact of specific climatic conditions on energy use. A reference heating energy consumption of 38.62 kWh/m2 was determined after the renovation of the building. Comparing the reference energy costs for heating before and after the implementation of the energy saving measures show a real decrease of the energy consumption for heating by 53.44%. Compared to the reference energy consumption for heating before and after the energy saving measures show an actual reduction of energy consumption for heating by 47.86%.


2021 ◽  
Vol 943 (1) ◽  
pp. 012026
Author(s):  
M R Kamal ◽  
M M Riyadh ◽  
R Zahid ◽  
A Rana ◽  
M Kamali ◽  
...  

Abstract The use of energy efficient building systems can play a key role in reducing energy consumption and the adverse impacts of greenhouse gas (GHG) emission. The occupancy profile of residential dwellings has a notable influence on the effectiveness of selecting appropriate energy upgrade retrofits. Building simulation models can be integrated to determine the impact of independent occupancy profile in realizing a building’s carbon mitigation target. In this paper, the most desirable energy upgrade retrofits are suggested for three different occupancy profiles by considering important economic parameters, such as the initial investment, payback period and environmental parameter such as GHG emissions. The three occupancy profiles considered were a single adult, couple without children and couple with children. For this purpose, a calibrated energy model was developed for a single-detached family household in British Columbia, Canada, which was equipped with power sensors for monitoring the real time energy data. From the calibrated energy model, three different energy upgrade retrofits (solar, window, and wall/roof insulation) were modelled for the occupancy profiles chosen and the most suitable energy upgrades were suggested. The results show that solar panels contributed the most in energy cost reduction and upgraded windows had the least GHG emission. With suitable financial initiative, the combination of all the three energy upgrades can be the best option in terms of environment and economy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247616
Author(s):  
Cassandra L. Thiel ◽  
SiWoon Park ◽  
Aviva A. Musicus ◽  
Jenna Agins ◽  
Jocelyn Gan ◽  
...  

This study measured the total quantity and composition of waste generated in a large, New York City (NYC) hospital kitchen over a one-day period to assess the impact of potential waste diversion strategies in potential weight of waste diverted from landfill and reduction in greenhouse gas (GHG) emissions. During the one-day audit, the hospital kitchen generated 1515.15 kg (1.7 US tons) of solid waste daily or 0.23 kg of total waste per meal served. Extrapolating to all meals served in 2019, the hospital kitchen generates over 442,067 kg (487 US tons) of waste and emits approximately 294,466 kg of CO2e annually from waste disposal. Most of this waste (85%, 376,247 kg or 415 US tons annually) is currently sent to landfill. With feasible changes, including increased recycling and moderate composting, this hospital could reduce landfilled waste by 205,245 kg (226 US tons, or 55% reduction) and reduce GHG emissions by 189,025 kg CO2e (64% reduction). Given NYC’s ambitious waste and GHG emission reduction targets outlined in its OneNYC strategic plan, studies analyzing composition, emissions, and waste diversion potential of large institutions can be valuable in achieving city sustainability goals.


2021 ◽  
Vol 13 (5) ◽  
pp. 2760
Author(s):  
Yujiro Wada ◽  
Tatsumi Yamamura ◽  
Kunihiro Hamada ◽  
Shinnosuke Wanaka

Greenhouse gas (GHG) emissions from the global shipping sector have been increasing due to global economic growth. The International Maritime Organization (IMO) has set a goal of halving GHG emissions from the global shipping sector by 2050 as compared with 2008 levels, and has responded by introducing several international regulations to reduce the GHG emissions of maritime transportation. The impact of GHG emissions’ regulation and measures to curb them have been evaluated in the IMO’s GHG studies. However, the long-term influence of these GHG emission measures has not yet been assessed. Additionally, the impact of various GHG reduction measures on the shipping and shipbuilding markets has not been considered; accordingly, there is room for improvement in the estimation of GHG emissions. Therefore, in this study, a model to consider GHG emission scenarios for the maritime transportation sector was developed using system dynamics and was integrated into a shipping and shipbuilding market model. The developed model was validated based on actual results and estimation results taken from a previous study. Subsequently, simulations were conducted, allowing us to evaluate the impact and effectiveness of GHG emission-curbing measures using the proposed model. Concretely, we conducted an evaluation of the effects of current and future measures, especially ship speed reduction, transition to liquid natural gas (LNG) fuel, promotion of energy efficiency design index (EEDI) regulation, and introduction of zero-emission ships, for GHG emission reduction. Additionally, we conducted an evaluation of the combination of current and future measures. The results showed that it is difficult to achieve the IMO goals for 2050 by combining only current measures and that the introduction of zero-emission ships is necessary to achieve the goals. Moreover, the limits of ship speed reduction were discussed quantitatively in relation to the maritime market aspect, and it was found that the feasible limit of ship speed reduction from a maritime market perspective was approximately 50%.


Author(s):  
Daniel Metzger

AbstractIn the strategy on the reduction of greenhouse gas (GHG) emission of the International Maritime Organization (IMO), market-based measures (MBMs) are considered feasible mid-term measures. Thus, the relevance of MBMs for the shipping industry can be expected to grow in the future and, consequently, carbon and other GHG emissions will impact the investment appraisal for greening technologies. This paper illustrates the impact of carbon pricing on the valuation of greening technologies (especially wind-assisted propulsion technologies) and on the relevant decision-making. In this regard, the straightforward approach of a direct acquisition and installation of the respective technology is considered and compared against innovative financing models, such as shared savings. Hence, the Fuzzy Pay-Off Method (FPOM) is applied in order to visualize the risks and chances linked to MBMs. Due to the economic life of greening technologies, the results are already relevant for today’s investment appraisals, even though carbon pricing has not been enforced so far.


Sign in / Sign up

Export Citation Format

Share Document