scholarly journals A Review of the State-of-Art, Limitations, and Perspectives of Machine Vision for Grape Ripening Estimation

2021 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Eleni Vrochidou ◽  
Christos Bazinas ◽  
George A. Papakostas ◽  
Theodore Pachidis ◽  
Vassilis G. Kaburlasos

This work highlights the most recent machine vision methodologies and algorithms proposed for estimating the ripening stage of grapes. Destructive and non-destructive methods are overviewed for in-field and in-lab applications. Integration principles of innovative technologies and algorithms to agricultural agrobots, namely, Agrobots, are investigated. Critical aspects and limitations, in terms of hardware and software, are also discussed. This work is meant to be a complete guide of the state-of-the-art machine vision algorithms for grape ripening estimation, pointing out the advantages and barriers for the adaptation of machine vision towards robotic automation of the grape and wine industry.

Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 282
Author(s):  
Eleni Vrochidou ◽  
Christos Bazinas ◽  
Michail Manios ◽  
George A. Papakostas ◽  
Theodore P. Pachidis ◽  
...  

Ripeness estimation of fruits and vegetables is a key factor for the optimization of field management and the harvesting of the desired product quality. Typical ripeness estimation involves multiple manual samplings before harvest followed by chemical analyses. Machine vision has paved the way for agricultural automation by introducing quicker, cost-effective, and non-destructive methods. This work comprehensively surveys the most recent applications of machine vision techniques for ripeness estimation. Due to the broad area of machine vision applications in agriculture, this review is limited only to the most recent techniques related to grapes. The aim of this work is to provide an overview of the state-of-the-art algorithms by covering a wide range of applications. The potential of current machine vision techniques for specific viticulture applications is also analyzed. Problems, limitations of each technique, and future trends are discussed. Moreover, the integration of machine vision algorithms in grape harvesting robots for real-time in-field maturity assessment is additionally examined.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1504
Author(s):  
Aitor Fernández-Jiménez ◽  
Daniel Fernández-de la Cruz ◽  
Jesús Ruiz-Torres ◽  
Jose Luis Perrino-Blanco ◽  
Raúl Jimeno-Almeida

The implantation of floating platforms for the generation of electricity from tidal currents is possible due to the development of new hydrokinetic microturbines. This article presents an analysis of the situation in which the exploitation of tidal currents is nowadays, the state of art of the existing technologies and the principal projects that are currently underway. In addition, it focuses on the different aspects and criteria to consider for building one of these plants. Finally, an installation by floating platform is proposed to supply electricity to a charging station for electric vehicles near the Nalon river (Spain) with a description of it and an analysis of feasibility.


2012 ◽  
Vol 229-231 ◽  
pp. 1476-1480 ◽  
Author(s):  
Salah M. Ali Al-Obaidi ◽  
M. Salman Leong ◽  
R.I. Raja Hamzah ◽  
Ahmed M. Abdelrhman

Acoustic emission (AE) measurements are one of many non-destructive testing methods which had found applications in defects detection in machines. This paper reviews the state of the art in AE based condition monitoring with particular emphasis on rotating and reciprocating machinery applications. Advantages and limitations of the AE technique in comparison to other condition monitoring techniques in detecting common machinery faults are also discussed.


2013 ◽  
Vol 19 (3) ◽  
pp. 325-334 ◽  
Author(s):  
Krzysztof Schabowicz

The paper presents a methodology for comprehensive use of ultrasonic tomography and impact-echo – the state-of-the-art acoustic techniques – for non-destructive identification of the thickness of unilaterally accessible concrete elements. Since the techniques are not commonly used, they are little known. Therefore, a brief description of the techniques is given to facilitate the understanding of the subsequently presented methodology. The article gives a practical example of the use of the methodology, which demonstrates its suitability for non-destructive identification of the thickness of concrete elements, particularly those only accessible from one side. In the example, the concrete shell of a heat pipe, carrying tunnel located under a river was tested using the ultrasonic tomography and impact-echo techniques. The tests were carried out according to the proposed methodology. It should be noted that the test results yielded by the two methods were similar. In this way, the proposed methodology has been validated.


2022 ◽  
Author(s):  
Paula Delgado-Santos ◽  
Giuseppe Stragapede ◽  
Ruben Tolosana ◽  
Richard Guest ◽  
Farzin Deravi ◽  
...  

The number of mobile devices, such as smartphones and smartwatches, is relentlessly increasing to almost 6.8 billion by 2022, and along with it, the amount of personal and sensitive data captured by them. This survey overviews the state of the art of what personal and sensitive user attributes can be extracted from mobile device sensors, emphasising critical aspects such as demographics, health and body features, activity and behaviour recognition, etc. In addition, we review popular metrics in the literature to quantify the degree of privacy, and discuss powerful privacy methods to protect the sensitive data while preserving data utility for analysis. Finally, open research questions are presented for further advancements in the field.


Author(s):  
Minghui Zhao ◽  
Tyler Chang ◽  
Aditya Arun ◽  
Roshan Ayyalasomayajula ◽  
Chi Zhang ◽  
...  

A myriad of IoT applications, ranging from tracking assets in hospitals, logistics, and construction industries to indoor tracking in large indoor spaces, demand centimeter-accurate localization that is robust to blockages from hands, furniture, or other occlusions in the environment. With this need, in the recent past, Ultra Wide Band (UWB) based localization and tracking has become popular. Its popularity is driven by its proposed high bandwidth and protocol specifically designed for localization of specialized "tags". This high bandwidth of UWB provides a fine resolution of the time-of-travel of the signal that can be translated to the location of the tag with centimeter-grade accuracy in a controlled environment. Unfortunately, we find that high latency and high-power consumption of these time-of-travel methods are the major culprits which prevent such a system from deploying multiple tags in the environment. Thus, we developed ULoc, a scalable, low-power, and cm-accurate UWB localization and tracking system. In ULoc, we custom build a multi-antenna UWB anchor that enables azimuth and polar angle of arrival (henceforth shortened to '3D-AoA') measurements, with just the reception of a single packet from the tag. By combining multiple UWB anchors, ULoc can localize the tag in 3D space. The single-packet location estimation reduces the latency of the entire system by at least 3×, as compared with state of art multi-packet UWB localization protocols, making UWB based localization scalable. ULoc's design also reduces the power consumption per location estimate at the tag by 9×, as compared to state-of-art time-of-travel algorithms. We further develop a novel 3D-AoA based 3D localization that shows a stationary localization accuracy of 3.6 cm which is 1.8× better than the state-of-the-art two-way ranging (TWR) systems. We further developed a temporal tracking system that achieves a tracking accuracy of 10 cm in mobile conditions which is 4.3× better than the state-of-the-art TWR systems.


2020 ◽  
Author(s):  
Fabrizio D'Amico ◽  
Chiara Ferrante ◽  
Luca Bianchini Ciampoli ◽  
Alessandro Calvi ◽  
Andrea Benedetto

<p>Recent and dramatic events occurred on the Italian transport networks have pointed out the urgent need for assessing the actual state of health along the national transport assets. Analogous considerations can be addressed towards the high exposition and vulnerability of the transport system to major natural events, such as floods or earthquake.</p><p>Recently, the administrations and managing companies have increasingly made use of non-destructive techniques for achieving a denser knowledge about the health of the asset.</p><p>However, one of the major limitations concerning these methods is that each technology, according to its specific features, is usually suitable for a single specific application and has very limited effectiveness for other tasks. Accordingly, the integration of datasets collected with different NDTs stands as a viable approach to fill technology-specific gaps, thereby ensuring a more comprehensive assessment of the infrastructure [1-3]. Data fusion logic can also potentially allow for further data interpretation from merging different information [4].</p><p>The EXTRATN project aims at overcoming the state-of-the-art research in the field of non-destructive monitoring of linear infrastructures and, through a “data fusion” logic, at achieving a comprehensive rate of knowledge about the actual condition of the asset. The addressed concept is a “fully sensed infrastructure”, being sensed by different technologies and with different scopes. Specifically, interferometric synthetic aperture radar (DInSAR), Laser Imaging Detection and Ranging (LiDAR), Ground-penetrating Radar (GPR) and Falling Weight Deflectometer (FWD) are considered to the purpose.</p><p>A system of transport infrastructure being located in the Province of Salerno (IT), within an area subjected to hydrogeological risk, has been selected as a study case for the integrated approach. This system includes a motorway, a rural highway and a railway.</p><p>As a major advantage with respect to the state-of-the-art, such a methodology allows for analysing the evolution trend of the on-going distresses, meaning a significant upgrade of the monitoring activities that may provide valuable information for a priority-based scheduling of the maintenance.</p><p>Moreover, such an approach enables to simultaneously monitor exogenous and endogenous events that may lead to a decrease of the safety, functionality or strength conditions.</p><p>The research is supported by the Italian Ministry of Education, University and Research under the National Project “Extended resilience analysis of transport networks (EXTRA TN): Towards a simultaneously space, aerial and ground sensed infrastructure for risks prevention”, PRIN 2017, Prot. 20179BP4SM.</p><p> </p><ol><li>Liu W, Chen S, Hauser E (2011) LiDAR-based bridge structure defect detection. Exp Tech 35(6):27–34.</li> <li>Grasmueck M, Viggiano DA (2007) Integration of ground-penetrating radar and laser position sensors for real-time 3-D data fusion. IEEE Trans Geosci Remote Sens 45(1):130–137.</li> <li>Solla M et al (2011) Non-destructive methodologies in the assessment of the masonry arch bridge of Traba, Spain. Eng Fail Anal 18(3):828–835</li> <li>Luo RC, Yih C-C, Su KL (2002) Multisensor fusion and integration: approaches, applications, and future research directions. IEEE Sens J 2(2):107–119.</li> </ol>


2014 ◽  
Vol 68 ◽  
pp. 68-81 ◽  
Author(s):  
M. Torres-Luque ◽  
E. Bastidas-Arteaga ◽  
F. Schoefs ◽  
M. Sánchez-Silva ◽  
J.F. Osma

Sign in / Sign up

Export Citation Format

Share Document