scholarly journals Populus simonii Carr. Reduces Wind Erosion and Improves Soil Properties in Northern China

Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 315 ◽  
Author(s):  
Jieming Zhang ◽  
Guodong Jia ◽  
Ziqiang Liu ◽  
Dandan Wang ◽  
Xinxiao Yu

To assess the ecological effects of poplar stands with different densities and ages, fixed observation sites were established in selected standard forest plots. Daily dynamics of wind speed and sand transport rate were monitored over an erosive period (March to June) in 2017. Soil characteristics were also measured at these plots. Average daily wind speed and average daily wind erosion modulus decreased significantly after the establishment of poplar trees on sandy land, while soil density decreased significantly, soil hardness increased greatly, and soil organic carbon, total N, and available P levels increased significantly. With increasing stand density, average daily wind speed and daily sediment transport firstly decreased and then increased, while the investigated soil nutrients showed the opposite trend. A tree density of 1320–1368 trees·hm−2 significantly reduced surface wind erosion. With the increase in forest age, the average daily wind speed and daily sediment transport declined, while soil physical and chemical properties were gradually improved. At a stand age of 40 years, wind-caused soil erosion significantly reduced. Taking these effects into consideration, the design and management of protective forest systems in arid and semi-arid areas can be greatly improved.

2019 ◽  
Vol 271 ◽  
pp. 102-115 ◽  
Author(s):  
Gangfeng Zhang ◽  
Cesar Azorin-Molina ◽  
Peijun Shi ◽  
Degen Lin ◽  
Jose A. Guijarro ◽  
...  

2021 ◽  
Vol 127 ◽  
pp. 107599
Author(s):  
Hanbing Zhang ◽  
Jian Peng ◽  
Chaonan Zhao ◽  
Zihan Xu ◽  
Jianquan Dong ◽  
...  

2017 ◽  
Vol 60 (3) ◽  
pp. 791-802 ◽  
Author(s):  
Howell B. Gonzales ◽  
Mark E. Casada ◽  
Lawrence J. Hagen ◽  
John Tatarko ◽  
Ronaldo G. Maghirang

Abstract.Crop residues help protect topsoil from depletion and abrasion due to wind erosion. Limited studies have focused on the type and orientation of canopies that help minimize the effects of erosion by wind. In this study, a series of wind tunnel experiments was conducted to measure sand transport and abrasion energies within simulated standing vegetation. Wind speed profiles, relative abrasion energies, and rates of sand discharge were evaluated during 3 min test runs at two different vegetation heights (150 and 220 mm) for each of three densities of simulated vegetation (i.e., 100 × 200 mm, 200 × 200 mm, and 300 × 200 mm spacing). Tests were also conducted for a bare sand surface. As expected, vegetation density was directly related to threshold velocity and inversely related to sand discharge. The densest configuration (i.e., 100 × 200 mm spacing) increased the threshold velocity of bare sand from 5.9 to 10 m s-1. The presence of vegetation was found to be effective in minimizing the abrasion experienced by the standing vegetation models by lowering the saltation of sand particles that could impact the simulated plants. The coefficient of abrasion (Can), a measure of kinetic energy via the impact of saltating particles, was affected by saltation discharge, although this did not depend on wind speed. The values of Can for all configurations were significantly different (p < 0.05) from the bare sand surface . Keywords: Abrasion energy, Sand discharge, Standing vegetation, Threshold wind velocity, Wind erosion.


2021 ◽  
Vol 272 ◽  
pp. 01001
Author(s):  
Ying Jia ◽  
YuFei Pei ◽  
ZhiWei Xie

In this paper, the effects of different wind-sand attack angle, wind speed, action time, concrete strength, sand particle size, and sand content on the surface wind erosion of concrete structures are experimentally studied. Wind erosion rate and strength loss rate are defined as the indexes to measure the degree of wind erosion of concrete. According to the similarity theory, the actual situation is deduced based on the wind erosion test, and the wind erosion time corresponding to the wind speed, the action time of wind sand, and the simulation test in the case of sand content is obtained. it makes the experimental study of wind erosion on concrete buildings to have more practical significance.


2019 ◽  
Vol 11 (17) ◽  
pp. 4755
Author(s):  
Juan Wang ◽  
Rui Wang

Straw checkerboards, as a mechanical sand barrier, are one of the most important engineering measures for sand control and vegetation restoration. In this study, we characterized the physical and chemical properties of soil crust treated with straw checkerboard in the Mu Us Sandland, Northern China, and investigated the mechanism of sand stabilization and revegetation in the arid area. We collected soil crust from 1.0 × 1.0 m straw checkerboards after revegetation intermittently over 10 years, and then measured properties such as soil particle size composition, bulk density, soil nutrients, pH, and other indicators in the laboratory. During the progress of straw checkerboard treatment, the results showed a significant decrease in percentage of soil crusts sand and a corresponding increase in the portion of silt and clay with straw checkerboard treatment years. The age of straw checkerboard treatment was positively correlated with soil nutrients, such as organic matter, total N, total P, total K, available N, available P, and available K. While pH showed a slightly rising trend, electrical conductivity (EC) was negatively correlated with crust life. The number of plant species has significantly changed, herbaceous vegetation succession being replaced by shrubs over 10 years, and vegetation coverage peaked at the sixth year. This study can represent a successful example of restoration in arid desert regions, thereby supplying more theoretical basis for sand fixation and dessert restoration.


2014 ◽  
Vol 955-959 ◽  
pp. 3499-3504
Author(s):  
Zheng Wen Yue ◽  
Rui Qiang Zhang ◽  
Tian Ming Gao

Using the wind data in Xilamuren desert grassland by wind erosion monitoring system to record the years of 2011-2013 as the research foundations, through the statistics of wind and sand transport potential research, from aspect of the characteristics of blown sand environment Xilamuren desert grassland which can be shown the research area are mainly affected by the westerly, Northwest westerly wind or northwest wind three group interaction. The study area of annual sediment potential had mainly effected by westerly and Northwest westerly wind direction ,with wind direction variability index in 0.51°~ 0.61°, belonging to the intermediate ratio range of direction. Annual sediment potential was between 135.95VU ~214.1VU,belongs to the small and medium-sized wind environment. The spring sand transport potential and the resultant sand transporting potential than the other three seasons of sediment transport potential and the resultant sand transporting potential, the main direction of resultant sand transporting potential to Northwest westerly direction, wind direction variability index is relatively large. For spring grassland vegetation coverage rate is lowly, wind speed is large, characteristics of sand is belong to rich material, which should we to retain sand material through the appropriate protective measures to reduce wind erosion. So analyzing the wind regime and the theory of sediment transport potential calculation, provide scientific theoretical basis for the prevention and treatment of sand and harm to the Xilamuren grassland sand flow process.


2012 ◽  
Vol 518-523 ◽  
pp. 4766-4770
Author(s):  
Lan Gao ◽  
Yu Jun Qiu ◽  
Xue Yong Zou ◽  
Ren De Wang ◽  
Na Zhou

The characteristics of soil erosion of steppe in Inner Mongolia were studied in wind-tunnel tests. The results indicated that the soil in this region consists primarily of sand and coarse silt, with particle sizes mainly between 0.02 and 1mm, and it is defined as erodible sandy soil. The eroded sediments are mainly concentrated at heights of 0~24cm, and the extreme value of particle size is clearly in the range 100~300μm. Average particle size increased with increasing wind speed, and it decreased exponentially in the vertical direction, reflecting the characteristics of sand transport by wind. The relationship between wind erosion rate and wind speed assumes a power function with correlation coefficients greater than 0.9. A wind speed of 15m/s is a significance point above which wind erosion in this region becomes very large. Soil erosion rate decreases logarithmically as soil moisture content and vegetation coverage increase, and the 5% level of moisture content is a turning point.


2017 ◽  
pp. 31-43
Author(s):  
Berta Ratilla ◽  
Loreme Cagande ◽  
Othello Capuno

Organic farming is one of the management strategies that improve productivity of marginal uplands. The study aimed to: (1) evaluate effects of various organic-based fertilizers on the growth and yield of corn; (2) determine the appropriate combination for optimum yield; and (3) assess changes on the soil physical and chemical properties. Experiment was laid out in Randomized Complete Block Design, with 3 replications and 7 treatments, namely; T0=(0-0-0); T1=1t ha-1 Evans + 45-30-30kg N, P2O5, K2O ha-1; T2=t ha-1 Wellgrow + 45-30-30kg N, P2O5, K2O ha-1; T3=15t ha-1 chicken dung; T4=10t ha-1 chicken dung + 45-30-30kg N, P2O5, K2O ha-1; T5=15t ha-1 Vermicast; and T6=10t ha-1 Vermicast + 45-30-30kg N, P2O5, K2O ha-1. Application of organic-based fertilizers with or without inorganic fertilizers promoted growth of corn than the control. But due to high infestation of corn silk beetle(Monolepta bifasciata Horns), its grain yield was greatly affected. In the second cropping, except for Evans, any of these fertilizers applied alone or combined with 45-30-30kg N, P2O5, K2O ha-1 appeared appropriate in increasing corn earyield. Soil physical and chemical properties changed with addition of organic fertilizers. While bulk density decreased irrespective of treatments, pH, total N, available P and exchangeable K generally increased more with chicken dung application.


1998 ◽  
Vol 38 (2) ◽  
pp. 25-32 ◽  
Author(s):  
C. W. Chu ◽  
C. S. Poon ◽  
R. Y. H. Cheung

Chemically Enhanced Primary Treatment (CEPT) or Chemically Assisted Primary Sedimentation (CAPS) is being employed at the new sewage work on Stonecutters Island as part of the Strategic Sewage Disposal Scheme (SSDS) in Hong Kong. CAPS involves the use of chemical coagulants (such as lime or ferric chloride) to induce coagulation or flocculation and let these finely-divided particles form large aggregates (floc) so that they can settle out within a reasonable period of time. In this study, five sludge samples collected from different sewage treatment plants in Hong Kong were physically and chemically characterized. They were chemically modified sludge from Stonecutters Island (CAPS) raw sludge from Tai Po and Yuen Long Sewage Treatment Plant (STP) (rTP & rYL) and anaerobically digested sludge from Tai Po and Yuen Long STP (dTP & dYL). It was found that CAPS sludge was better than other 4 sludge samples in terms of settleability and dewaterability. CAPS sludge contained significant higher amounts (p<0.01) of extractable compounds than other sludges (except NO3− for dTP, NH4+ and PO43− for dYL). The concentration of total N and P in CAPS sludge were significantly higher (p<0.01) than other sludges (except dYL). The concentrations of total Cu, Pb, Ni, Cd, Cr and K in the CAPS sludge were also significantly higher (p<0.01) than other sludge samples. Most of the metals (Cr, Pb, Cr and Zn) in CAPS sludge were associated with the organically-bounded phase. It is concluded that there are significant differences in both physical and chemical properties between the chemically modified sludge and biological treated sludges.


Sign in / Sign up

Export Citation Format

Share Document