Using a water budget model to anticipate the impact of climate change on groundwater recharge at the regional scale in cold and humid climates - example of southern Quebec (Canada)

Author(s):  
Emmanuel Dubois ◽  
Marie Larocque ◽  
Sylvain Gagné

<p>In cold and humid climates, rivers and superficial water bodies are often fed by groundwater with relatively constant inflows that are most visible during the summer (limited net precipitation) and the winter (limited runoff and infiltration). The harsh winter – short growing season succession could be drastically affected by climate change. Although water is abundant, extreme low flows are expected in the near future, most likely due to warmer summer temperatures, increased summer PET and possible lower summer precipitation. It is thus crucial to provide stakeholders with scenarios of future groundwater recharge (GWR) to anticipate the impacts of climate change on groundwater resources at the regional scale. This study aims to test the contributions of a superficial water budget model to estimate the impact of climate change on the regional GWR. The methodology is tested in a forested and agricultural region of southern Quebec, located between the St. Lawrence River and the Canada-USA border, and between the Quebec-Ontario border and Quebec City (36,000 km²). Scenarios of GWR for the region are simulated with the HydroBudget model, performing a transient-state spatialized superficial water budget, and 12 climate scenarios (RCP 4.5 and 8.5, 1951-2100 period). The model was previously calibrated in the study area for the 1961-2017 period and provides spatially distributed runoff, actual evapotranspiration, and GWR fluxes at a 500 x 500 m resolution with a monthly time step. Climate scenarios show warming of the annual temperature from +2 to +5°C and up to 20% increase of annual precipitation at the 2100 horizon compared to the 1981-2010 reference period. By the end of the century, the number of days above 0°C could double between November and April, dividing by almost two the quantity of snow during winter. The clear trends of warming temperature leads to a clear actual evapotranspiration (AET) increase while the increasing variability in annual precipitation translates into more variable annual runoff and GWR. Although no annual GWR decrease is simulated, an increase of winter GWR (up to x2) is expected, linked to warmer winters and unfrozen soils, followed by a decrease for the rest of the year, linked to a longer growing season producing higher AET rates. Although simple in its simulation process, the use of a superficial water budget model simulating soil frost provides new insights into the possible future trends in the different hydrologic variables based on a robust understanding of past condition. Aside from providing scenarios of spatialized GWR (also runoff and AET) at the 2100 horizon for a large region, this study shows that a simple water budget model is an appropriate and affordable tool to provide stakeholders with useful data for water management in a changing climate.</p>

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1153
Author(s):  
Shih-Jung Wang ◽  
Cheng-Haw Lee ◽  
Chen-Feng Yeh ◽  
Yong Fern Choo ◽  
Hung-Wei Tseng

Climate change can directly or indirectly influence groundwater resources. The mechanisms of this influence are complex and not easily quantified. Understanding the effect of climate change on groundwater systems can help governments adopt suitable strategies for water resources. The baseflow concept can be used to relate climate conditions to groundwater systems for assessing the climate change impact on groundwater resources. This study applies the stable baseflow concept to the estimation of the groundwater recharge in ten groundwater regions in Taiwan, under historical and climate scenario conditions. The recharge rates at the main river gauge stations in the groundwater regions were assessed using historical data. Regression equations between rainfall and groundwater recharge quantities were developed for the ten groundwater regions. The assessment results can be used for recharge evaluation in Taiwan. The climate change estimation results show that climate change would increase groundwater recharge by 32.6% or decrease it by 28.9% on average under the climate scenarios, with respect to the baseline quantity in Taiwan. The impact of climate change on groundwater systems may be positive. This study proposes a method for assessing the impact of climate change on groundwater systems. The assessment results provide important information for strategy development in groundwater resources management.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 544
Author(s):  
Hang Ning ◽  
Ming Tang ◽  
Hui Chen

Dendroctonus armandi (Coleoptera: Curculionidae: Scolytidae) is a bark beetle native to China and is the most destructive forest pest in the Pinus armandii woodlands of central China. Due to ongoing climate warming, D. armandi outbreaks have become more frequent and severe. Here, we used Maxent to model its current and future potential distribution in China. Minimum temperature of the coldest month and precipitation seasonality are the two major factors constraining the current distribution of D. armandi. Currently, the suitable area of D. armandi falls within the Qinling Mountains and Daba Mountains. The total suitable area is 15.83 × 104 km2. Under future climate scenarios, the total suitable area is projected to increase slightly, while remaining within the Qinling Mountains and Daba Mountains. Among the climate scenarios, the distribution expanded the most under the maximum greenhouse gas emission scenario (representative concentration pathway (RCP) 8.5). Under all assumptions, the highly suitable area is expected to increase over time; the increase will occur in southern Shaanxi, northwest Hubei, and northeast Sichuan Provinces. By the 2050s, the highly suitable area is projected to increase by 0.82 × 104 km2. By the 2050s, the suitable climatic niche for D. armandi will increase along the Qinling Mountains and Daba Mountains, posing a major challenge for forest managers. Our findings provide information that can be used to monitor D. armandi populations, host health, and the impact of climate change, shedding light on the effectiveness of management responses.


2020 ◽  
Vol 13 (1) ◽  
pp. 222
Author(s):  
Miroslava Navrátilová ◽  
Markéta Beranová ◽  
Lucie Severová ◽  
Karel Šrédl ◽  
Roman Svoboda ◽  
...  

The aim of the presented article is to evaluate the impact of climate change on the sugar content of grapes in the Czech Republic during the period 2000–2019 through selected indicators on the basis of available secondary sources. Attention is focused on the developments in both the main wine-growing regions of Moravia and Bohemia. In the field of viticulture and wine-growing, the sugar content of grapes, as a basic parameter for the classification of wines, plays an important role. In the Czech Republic, the average sugar content of grapes has had a constantly growing trend. This trend is evident both in the wine-growing region of Bohemia and in the wine-growing region of Moravia. The impact of climate change, especially the gradual increase of average temperatures in the growing season, cannot be overlooked. It greatly affects, among other things, the sugar content of grapes. Calculations according to the Huglin Index and the Winkler Index were used to determine the relationship between climate and sugar content. These indexes summarize the course of temperatures during the entire vegetation period into a single numerical value. The results show that both indexes describe the effect of air temperature on sugar content in both wine regions of the Czech Republic in a statistically significant way. The Huglin Index shows a higher correlation rate. The Winkler Index proved to be less suitable for both areas. Alternatively, the Winkler Index calculated for a shorter growing season was tested, which showed a higher degree of correlation with sugar content, approaching the significance of the Huglin Index.


2021 ◽  
Vol 22 (2) ◽  
pp. 191-197
Author(s):  
K. PHILIP ◽  
S.S. ASHA DEVI ◽  
G.K. JHA ◽  
B.M.K. RAJU ◽  
B. SEN ◽  
...  

The impact of climate change on agriculture is well studied yet there is scope for improvement as crop specific and location specific impacts need to be assessed realistically to frame adaptation and mitigation strategies to lessen the adverse effects of climate change. Many researchers have tried to estimate potential impact of climate change on wheat yields using indirect crop simulation modeling techniques. Here, this study estimated the potential impact of climate change on wheat yields using a crop specific panel data set from 1981 to 2010,for six major wheat producing states. The study revealed that 1°C increase in average maximum temperature during the growing season reduces wheat yield by 3 percent. Major share of wheat growth and yield (79%) is attributed to increase in usage of physical inputs specifically fertilizers, machine labour and human labour. The estimated impact was lesser than previously reported studies due to the inclusion of wide range of short-term adaptation strategies to climate change. The results reiterate the necessity of including confluent factors like physical inputs while investigating the impact of climate factors on crop yields.


2021 ◽  
Vol 16 (1) ◽  
pp. 142-147
Author(s):  
Anna Scherbakova

Today there is enough scientific research to prove the impact of climate change on agriculture. However, there is no conclusive conclusion as to what is in store for agriculture, its potential will increase or decrease. Significant consequences of the impact of climate change are likely to manifest themselves at the regional level, and this requires additional research for further adaptation of agriculture in the corresponding territory. The aim of the study is to assess changes in agro-climatic indicators at the regional level. The subject is the Komi Republic, located in the extreme northeast of the European part of the country. The chosen research methodology based on statistical processing of agro-climatic indicators for ten meteorological stations in the region for 1960-2018 and economic indicators of productivity and gross harvest of agricultural crops for 1913-2018 due to the large amount of data. Paired regression analysis used accurately interpret the results. The obtained mathematical models evaluated according to the Pearson coefficient, Student’s t-criterion, determination coefficient, F – Fisher’s criterion, so that the results of the study were reliable. For some regions, the consequences of climate change may turn out to be negative in the form of a decrease in food supply, for others - positive, due to an increase in the duration of the growing season and, accordingly, an increase in the potential productivity of agricultural crops. The relevance of the study is because these positive consequences will be especially characteristic for the northern territories. As a result, it revealed that in four agro-climatic regions of the Komi Republic, there were insignificant climatic changes for agriculture over a sixty-year period. An analysis of the yield of vegetables in open ground showed that it increased from 36 to 314 tons per hectare, and the gross yield of the main agricultural crop - potatoes - decreased almost 3 times, but the main reason is the reduction in acreage, and not climate change. However, the trend line for potato yields in the region as a whole shows an upward trend over a 100-year period. The performed paired regression analysis between the selected agro-climatic indicators and the yield of agricultural crops of the republic revealed an average direct relationship only between the yield of vegetables and the duration of the growing season, and the sum of average daily temperatures. Consequently, it is currently impossible to assert that the ongoing climatic changes have a significant impact on agriculture in the Komi Republic


2012 ◽  
Vol 16 (5) ◽  
pp. 1517-1531 ◽  
Author(s):  
J. Dams ◽  
E. Salvadore ◽  
T. Van Daele ◽  
V. Ntegeka ◽  
P. Willems ◽  
...  

Abstract. Given the importance of groundwater for food production and drinking water supply, but also for the survival of groundwater dependent terrestrial ecosystems (GWDTEs) it is essential to assess the impact of climate change on this freshwater resource. In this paper we study with high temporal and spatial resolution the impact of 28 climate change scenarios on the groundwater system of a lowland catchment in Belgium. Our results show for the scenario period 2070–2101 compared with the reference period 1960–1991, a change in annual groundwater recharge between −20% and +7%. On average annual groundwater recharge decreases 7%. In most scenarios the recharge increases during winter but decreases during summer. The altered recharge patterns cause the groundwater level to decrease significantly from September to January. On average the groundwater level decreases about 7 cm with a standard deviation between the scenarios of 5 cm. Groundwater levels in interfluves and upstream areas are more sensitive to climate change than groundwater levels in the river valley. Groundwater discharge to GWDTEs is expected to decrease during late summer and autumn as much as 10%, though the discharge remains at reference-period level during winter and early spring. As GWDTEs are strongly influenced by temporal dynamics of the groundwater system, close monitoring of groundwater and implementation of adaptive management measures are required to prevent ecological loss.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 786 ◽  
Author(s):  
Yong He ◽  
Yilin Shi ◽  
Hao Liang ◽  
Kelin Hu ◽  
Lingling Hou

The impact of soil nutrient depletion on crop production is a thoroughly researched issue; however, robust assessments on the impact of climate change on water and N fluxes in agroecosystem are lacking. The complexity of soil water and N fluxes in response to climate change under agroecosystems makes simulation-based approaches to this issue appealing. This study evaluated the responses of crop yield, soil water, and N fluxes of a wheat–maize rotation to two Representative Concentration Pathways climate scenarios (RCP4.5 and RCP8.5) at Tai’an, a representative site on the North China Plain (NCP). Results showed that the mean air temperature and accumulated precipitation for both winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) growing seasons changed in both magnitude and pattern under various climate scenarios. The temperature increases shortened the growth periods of these two crops by more than 13 days and decrease summer maize yields (P < 0.05). These results are illustrated by lower yield results associated with RCP4.5 (20.5%) and RCP8.5 (19.3%) climate scenarios, respectively. During the winter wheat growing season, water drainage examined in the climate scenarios was significantly higher (more than double) than the baseline, and there was no significant change to nitrate leaching and denitrification. In the summer maize growing season, with continuously rising temperatures, the ranking for evaporation was in the order baseline < RCP4.5 < RCP8.5, however, the opposite ranking applied for transpiration and evapotranspiration. The increase in water drainage was 1.4 times higher than the baseline, whereas the nitrate leaching in soil significantly decreased. Our simulation results provide an opportunity to improve the understanding of soil water and N fluxes in agroecosystems, which can lead to deficient or excess N under future climate conditions.


Sign in / Sign up

Export Citation Format

Share Document