scholarly journals Supplemental Aspergillus Lipase and Protease Preparations Display Powerful Bifidogenic Effects and Modulate the Gut Microbiota Community of Rats

Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 294
Author(s):  
Yongshou Yang ◽  
Thanutchaporn Kumrungsee ◽  
Norihisa Kato ◽  
Shinji Fukuda ◽  
Manabu Kuroda ◽  
...  

Aspergillus-derived protease and lipase, which are involved in the production of Aspergillus-fermented foods, are consumed as digestive enzyme supplements. A marked bifidogenic effect of supplemental Aspergillus protease preparation (AP) in rats fed with a high-fat diet was identified. This study was conducted to examine whether the consumption of Aspergillus-derived lipase exerts similar bifidogenic effect. Rats were fed diets supplemented with either an Aspergillus-derived lipase preparation (AL) or AP at 0.1% for two weeks. 16S rRNA gene sequencing analysis indicated that supplemental AL and AP markedly influenced cecal microbial community. At the phylum level, treatment with AL and AP resulted in a lower relative abundance of Firmicutes and Bacteroidetes, but a higher relative abundance of Actinobacteria and Proteobacteria than the control rats (p < 0.05). At the genus level, AL and AP remarkedly elevated the relative abundances of Bifidobacterium, Collinsella, and Enterococcus, but significantly reduced those of Oscillospira, Dorea, and Coprobacillus (p < 0.05). These modulations were similar to those reported by several studies with typical prebiotic oligosaccharides. Notably, the bifidogenic effect of AL was much greater than that of AP. Our results show that the two different Aspergillus-derived preparations, AL and AP, have strong bifidogenic effects and can change the microbiota’s composition.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vanessa Palmas ◽  
Silvia Pisanu ◽  
Veronica Madau ◽  
Emanuela Casula ◽  
Andrea Deledda ◽  
...  

AbstractIn the present study, we characterized the distinctive signatures of the gut microbiota (GM) from overweight/obese patients (OB), and normal-weight controls (NW), both of Sardinian origin. Fecal bacterial composition of 46 OB patients (BMI = 36.6 ± 6.0; F/M = 40/6) was analyzed and compared to that of 46 NW subjects (BMI = 21.6 ± 2.1; F/M = 41/5), matched for sex, age and smoking status, by using 16S rRNA gene sequencing on MiSeq Illumina platform. The gut microbial community of OB patients exhibited a significant decrease in the relative abundance of several Bacteroidetes taxa (i.e. Flavobacteriaceae, Porphyromonadaceae, Sphingobacteriaceae, Flavobacterium, Rikenella spp., Pedobacter spp., Parabacteroides spp., Bacteroides spp.) when compared to NW; instead, several Firmicutes taxa were significantly increased in the same subjects (Lachnospiraceae, Gemellaceae, Paenibacillaceae, Streptococcaceae, Thermicanaceae, Gemella, Mitsuokella, Streptococcus, Acidaminococcus spp., Eubacterium spp., Ruminococcus spp., Megamonas spp., Streptococcus, Thermicanus, Megasphaera spp. and Veillonella spp.). Correlation analysis indicated that body fatness and waist circumference negatively correlated with Bacteroidetes taxa, while Firmicutes taxa positively correlated with body fat and negatively with muscle mass and/or physical activity level. Furthermore, the relative abundance of several bacterial taxa belonging to Enterobacteriaceae family, known to exhibit endotoxic activity, was increased in the OB group compared to NW. The results extend our knowledge on the GM profiles in Italian OB, identifying novel taxa linking obesity and intestine.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Takayuki Matsuoka ◽  
Takuya Shimizu ◽  
Tadanori Minagawa ◽  
Wakiko Hiranuma ◽  
Miki Takeda ◽  
...  

Abstract Background Bacteroides dorei is an anaerobic gram-negative bacterium first described in 2006. Because of the high similarity in mass spectra between B. dorei and Bacteroides vulgatus, discriminating between these species is arduous in clinical practice. In recent decades, 16S rRNA gene sequencing has been a complementary method for distinguishing taxonomically close bacteria, including B. dorei and B. vulgatus, at the genus and species levels. Consequently, B. dorei has been shown to contribute to some diseases, including type 1 autoimmune diabetes mellitus and atherosclerotic diseases. However, there are no reports on invasive infectious diseases caused by B. dorei. This report describes the first case of direct invasion and colonisation of human tissue by B. dorei, thus providing a warning regarding the previously proposed application of B. dorei as a live biotherapeutic for atherosclerotic diseases. Case presentation A 78-year-old Japanese man complained of intermittent chest/back pain and was diagnosed with a mycotic thoracic aortic aneurysm by enhanced computed tomography on admission. Despite strict blood pressure control and empirical antibiotic therapy, the patient’s condition worsened. To prevent aneurysmal rupture and eliminate infectious foci, the patient underwent surgical treatment. The resected specimen was subjected to tissue culture and 16S rRNA gene sequencing analysis to identify pathogenic bacteria. A few days after the surgery, culture and sequencing results revealed that the pathogen was B. dorei/B. vulgatus and B. dorei, respectively. The patient was successfully treated with appropriate antibacterial therapy and after improvement, was transferred to another hospital for rehabilitation on postoperative day 34. There was no recurrence of infection or aneurysm after the patient transfer. Conclusions This report describes the first case of invasive infectious disease caused by B. dorei, casting a shadow over its utilisation as a probiotic for atherosclerotic diseases.


2021 ◽  
Vol 38 (3) ◽  
pp. 375-382
Author(s):  
Pınar Çağlayan

As an extreme environment, soda lakes harbor various haloalkaliphilic microorganisms. Salda Lake is one of the natural soda lake (pH˃9) in Turkey. Haloalkaliphiles are unique microorganisms in their ability to live in high alkaline and high saline conditions, and play an important role in biodegradation and bioremediation of hydrocarbons. Hence, the aims of this study were to isolate haloalkaliphilic bacteria from water sample of Salda Lake, to identify these isolates by both conventional and molecular methods, to screen their industrially important enzymes, and to investigate their antimicrobial resistance profiles. Six isolates were identified as Bacillus horneckiae, Bacillus subtilis, Bacillus paramycoides, Bacillus pumilus, Staphylococcus epidermidis, Bacillus haynesii according to 16S rRNA gene sequencing analysis. The industrially important enzymes (amylase, cellulase, pullulanase, lipase, urease, protease, caseinase, oxidase, catalase) were produced by haloalkaliphilic isolates. These enzymes maybe used in alkaline and saline industrial processes. Although Bacillus subtilis was susceptible to all antibiotics, other isolates showed resistance to at least one antibiotic. The resistance against antibiotics were found as ampicillin/sulbactam 83%, amoxycillin/clavulanic acid 83%, ampicillin 67%, mupirocin 67%, chloramphenicol 50%, tetracycline 50%, imipenem 50%, meropenem 50%, cefadroxil 17%. These bacteria may have develope resistance to antibiotics that entering their natural environment in different ways.


2020 ◽  
Vol 52 (12) ◽  
pp. 1959-1975
Author(s):  
Yu Wang ◽  
Weifan Yao ◽  
Bo Li ◽  
Shiyun Qian ◽  
Binbin Wei ◽  
...  

AbstractGut microbiota dysbiosis has a significant role in the pathogenesis of metabolic diseases, including obesity. Nuciferine (NUC) is a main bioactive component in the lotus leaf that has been used as food in China since ancient times. Here, we examined whether the anti-obesity effects of NUC are related to modulations in the gut microbiota. Using an obese rat model fed a HFD for 8 weeks, we show that NUC supplementation of HFD rats prevents weight gain, reduces fat accumulation, and ameliorates lipid metabolic disorders. Furthermore, 16S rRNA gene sequencing of the fecal microbiota suggested that NUC changed the diversity and composition of the gut microbiota in HFD-fed rats. In particular, NUC decreased the ratio of the phyla Firmicutes/Bacteroidetes, the relative abundance of the LPS-producing genus Desulfovibrio and bacteria involved in lipid metabolism, whereas it increased the relative abundance of SCFA-producing bacteria in HFD-fed rats. Predicted functional analysis of microbial communities showed that NUC modified genes involved in LPS biosynthesis and lipid metabolism. In addition, serum metabolomics analysis revealed that NUC effectively improved HFD-induced disorders of endogenous metabolism, especially lipid metabolism. Notably, NUC promoted SCFA production and enhanced intestinal integrity, leading to lower blood endotoxemia to reduce inflammation in HFD-fed rats. Together, the anti-obesity effects of NUC may be related to modulations in the composition and potential function of gut microbiota, improvement in intestinal barrier integrity and prevention of chronic low-grade inflammation. This research may provide support for the application of NUC in the prevention and treatment of obesity.


Author(s):  
Haomiao Cheng ◽  
Ling Cheng ◽  
Liang Wang ◽  
Tengyi Zhu ◽  
Wei Cai ◽  
...  

The effects of hydrodynamic disturbances on the bacterial communities in eutrophic aquatic environments remain poorly understood, despite their importance to ecological evaluation and remediation. This study investigated the evolution of bacterial communities in the water–sediment systems under the influence of three typical velocity conditions with the timescale of 5 weeks. The results demonstrated that higher bacterial diversity and notable differences were detected in sediment compared to water using the 16S rRNA gene sequencing. The phyla Firmicutes and γ-Proteobacteria survived better in both water and sediment under stronger water disturbances. Their relative abundance peaked at 36.0%, 33.2% in water and 38.0%, 43.6% in sediment, respectively, while the phylum Actinobacteria in water had the opposite tendency. Its relative abundance grew rapidly in static control (SC) and peaked at 44.8%, and it almost disappeared in disturbance conditions. These phenomena were caused by the proliferation of genus Exiguobacterium (belonging to Firmicutes), Citrobacter, Acinetobacter, Pseudomonas (belonging to γ-Proteobacteria), and hgcI_clade (belonging to Actinobacteria). The nonmetric multidimensional scaling (NMDS) and Venn analysis also revealed significantly different evolutionary trend in the three water-sediment systems. It was most likely caused by the changes of geochemical characteristics (dissolved oxygen (DO) and nutrients). This kind of study can provide helpful information for ecological assessment and remediation strategy in eutrophic aquatic environments.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 744 ◽  
Author(s):  
Jose Jaimes ◽  
Veronika Jarosova ◽  
Ondrej Vesely ◽  
Chahrazed Mekadim ◽  
Jakub Mrazek ◽  
...  

Dietary phenolics or polyphenols are mostly metabolized by the human gut microbiota. These metabolites appear to confer the beneficial health effects attributed to phenolics. Microbial composition affects the type of metabolites produced. Reciprocally, phenolics modulate microbial composition. Understanding this relationship could be used to positively impact health by phenolic supplementation and thus create favorable colonic conditions. This study explored the effect of six stilbenoids (batatasin III, oxyresveratrol, piceatannol, pinostilbene, resveratrol, thunalbene) on the gut microbiota composition. Stilbenoids were anaerobically fermented with fecal bacteria from four donors, samples were collected at 0 and 24 h, and effects on the microbiota were assessed by 16S rRNA gene sequencing. Statistical tests identified affected microbes at three taxonomic levels. Observed microbial composition modulation by stilbenoids included a decrease in the Firmicutes to Bacteroidetes ratio, a decrease in the relative abundance of strains from the genus Clostridium, and effects on the family Lachnospiraceae. A frequently observed effect was a further decrease of the relative abundance when compared to the control. An opposite effect to the control was observed for Faecalibacterium prausnitzii, whose relative abundance increased. Observed effects were more frequently attributed to resveratrol and piceatannol, followed by thunalbene and batatasin III.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2256-2267
Author(s):  
Ruta Suresh Deshpande ◽  
Devi Sundaravadivelu ◽  
Pablo Campo ◽  
Jorge W. SantoDomingo ◽  
Robyn N. Conmy

Abstract 2017-271 In recent years, diluted bitumen (or dilbit) has become an important source of hydrocarbon-based fuel. While information on the degradation of crude oils has been well researched, dilbit degradation has been studied at a much lesser extent. The objective of this study was to compare biodegradation of dilbit with a conventional crude oil (CCO) under various conditions. Two different microcosm experiments were set up, one containing a mixed culture acclimated to dilbit (Kalamazoo River Enrichment, KRC) and the other having a mixed culture enriched on soil contaminated with hydrocarbons (Anderson Ferry Enrichment, AFC). The microcosms were run for 60 d at 25 °C and for 72 days at 5 °C in flasks containing sterile Bushnell Hass broth and naturally dispersed oil. Each flask was inoculated with the KRC and AFC mixed cultures, and rotated on an orbital shaker (200 rpm) at the above stated temperatures. On each sampling day, triplicates were sacrificed to determine the residual hydrocarbon concentration. Additionally, some samples were used to determine the bacterial composition using 16S rRNA gene sequencing analysis. Hydrocarbon analysis (alkanes and PAHs) was performed by gas chromatography/mass spectrometry (GC/MS/MS). Higher degradation rates were achieved at 25 °C as compared to 5 °C. All the enrichments metabolized CCO as well dilbit, but the nature and extent of the degradation was distinct. KRC meso culture was the most effective among all, as it completely removed alkanes and most of the PAHs. AFC enrichment performed differently at the two temperatures; an acclimation period (8 d) was observed at 5 °C while there was no lag at 25 °C. KRC cryo culture as well as AFC culture at both temperatures degraded alkanes completely while they were not able to metabolize heavier fractions of the oil (C2–4 homologues of 3- and 4-ring compounds). All cultures showed the presence of diverse oil degrading bacteria and the differences in their compositions affected the biodegradation. Although dilbit was biodegraded, for all the treatments except AFC at 5 °C, the rate of degradation and the extent of degradation was greater for CCO owing to the higher concentrations of lighter hydrocarbons.


2010 ◽  
Vol 77 (4) ◽  
pp. 1284-1291 ◽  
Author(s):  
Eun-Jin Park ◽  
Kyoung-Ho Kim ◽  
Guy C. J. Abell ◽  
Min-Soo Kim ◽  
Seong Woon Roh ◽  
...  

ABSTRACTViruses are recognized as the most abundant biological components on Earth, and they regulate the structure of microbial communities in many environments. In soil and marine environments, microorganism-infecting phages are the most common type of virus. Although several types of bacteriophage have been isolated from fermented foods, little is known about the overall viral assemblages (viromes) of these environments. In this study, metagenomic analyses were performed on the uncultivated viral communities from three fermented foods, fermented shrimp, kimchi, and sauerkraut. Using a high-throughput pyrosequencing technique, a total of 81,831, 70,591 and 69,464 viral sequences were obtained from fermented shrimp, kimchi and sauerkraut, respectively. Moreover, 37 to 50% of these sequences showed no significant hit against sequences in public databases. There were some discrepancies between the prediction of bacteriophages hosts via homology comparison and bacterial distribution, as determined from 16S rRNA gene sequencing. These discrepancies likely reflect the fact that the viral genomes of fermented foods are poorly represented in public databases. Double-stranded DNA viral communities were amplified from fermented foods by using a linker-amplified shotgun library. These communities were dominated by bacteriophages belonging to the viral orderCaudovirales(i.e.,Myoviridae,Podoviridae, andSiphoviridae). This study indicates that fermented foods contain less complex viral communities than many other environmental habitats, such as seawater, human feces, marine sediment, and soil.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8923
Author(s):  
Yimeng Li ◽  
Minghui Shi ◽  
Tianxiang Zhang ◽  
Xin Hu ◽  
Baofeng Zhang ◽  
...  

Weaning is an important event for all mammals, including young forest musk deer. However, weaning stress may cause intestinal microbiota-related disorders. Therefore, high-throughput 16S rRNA gene sequencing was applied to study the dynamic changes in intestinal microbiota during pre-weaning (10 days before weaning) and post-weaning (10 days after weaning) in 15 young forest musk deer. We saw that intestinal microbiota diversity in the post-weaning period was significantly higher than that in the pre-weaning period. The most dominant bacterial phyla were similar in the two groups (Firmicutes, Bacteroidetes and Verrucomicrobia). Meanwhile, we applied Linear discriminant analysis effect size (LefSe) to identify the most differentially microbial taxa in the pre-weaning and post-weaning groups. In the post-weaning forest musk deer, the relative abundance of Actinobacteria, Spirochaetes, Ruminococcaceae_UCG-005, Treponema and Prevotella was higher than in the pre-weaning group. However, higher relative abundance of the phyla Bacteroidetes was found in the pre-weaning group compared with that in the post-weaning group. In summary, this research provides a theoretical foundation for the dynamics of young forest musk deer intestinal microbiota during the weaning transition, which may benefit in understanding the growth and health of forest musk deer.


Sign in / Sign up

Export Citation Format

Share Document