scholarly journals On a Casson Fluid Motion: Nonuniform Width Symmetric Channel and Peristaltic Flows

Fluids ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 356
Author(s):  
Simone Guadagli ◽  
Liviu Iulian Palade ◽  
Lorenzo Fusi ◽  
Angiolo Farina

Widely used for modeling biological fluids flows—in particular, blood vessel flows—a Casson flow is studied in a symmetric channel for which the aspect ratio enables one to use the lubrication approximation. Two flow driving conditions are prescribed: inlet–outlet pressure difference and peristaltic oscillations of the vessel walls. In both cases, starting from mass and momentum balance and using lubrication approximation, we investigate the conditions to be imposed on the driving mechanisms so that the inner plug does not come in touch with the walls. The study of the peristaltic flow is of great importance in view of its applications in physiology (including microcirculation applications).

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Javier Cruz ◽  
Klas Hjort

AbstractThe ability to focus, separate and concentrate specific targets in a fluid is essential for the analysis of complex samples such as biological fluids, where a myriad of different particles may be present. Inertial focusing is a very promising technology for such tasks, and specially a recently presented variant, inertial focusing in High Aspect Ratio Curved systems (HARC systems), where the systems are easily engineered and focus the targets together in a stable position over a wide range of particle sizes and flow rates. However, although convenient for laser interrogation and concentration, by focusing all particles together, HARC systems lose an essential feature of inertial focusing: the possibility of particle separation by size. Within this work, we report that HARC systems not only do have the capacity to separate particles but can do so with extremely high resolution, which we demonstrate for particles with a size difference down to 80 nm. In addition to the concept for particle separation, a model considering the main flow, the secondary flow and a simplified expression for the lift force in HARC microchannels was developed and proven accurate for the prediction of the performance of the systems. The concept was also demonstrated experimentally with three different sub-micron particles (0.79, 0.92 and 1.0 µm in diameter) in silicon-glass microchannels, where the resolution in the separation could be modulated by the radius of the channel. With the capacity to focus sub-micron particles and to separate them with high resolution, we believe that inertial focusing in HARC systems is a technology with the potential to facilitate the analysis of complex fluid samples containing bioparticles like bacteria, viruses or eukaryotic organelles.


2012 ◽  
Vol 24 (1) ◽  
pp. 1-9 ◽  
Author(s):  
P. Nagarani ◽  
A. Lewis

2011 ◽  
Vol 8 (3-4) ◽  
pp. 295-308 ◽  
Author(s):  
Kh. S. Mekheimer ◽  
S. Z.-A. Husseny ◽  
A. I. Abd el Lateef

Peristaltic transport of an incompressible viscous fluid due to an asymmetric waves propagating on the horizontal sidewalls of a rectangular duct is studied under long-wavelength and low-Reynolds number assumptions. The peristaltic wave train on the walls have different amplitudes and phase. The flow is investigated in a wave frame of reference moving with velocity of the wave. The effect of aspect ratio, phase difference, varying channel width and wave amplitudes on the pumping characteristics and trapping phenomena are discussed in detail. The results are compared to with those corresponding to Poiseuille flow.


2008 ◽  
Vol 130 (11) ◽  
Author(s):  
Hazem Ali Attia ◽  
Mohamed Eissa Sayed-Ahmed

The unsteady magnetohydrodynamics flow of an electrically conducting viscous incompressible non-Newtonian Casson fluid bounded by two parallel nonconducting porous plates is studied with heat transfer considering the Hall effect. An external uniform magnetic field is applied perpendicular to the plates and the fluid motion is subjected to a uniform suction and injection. The lower plate is stationary and the upper plate is suddenly set into motion and simultaneously suddenly isothermally heated to a temperature other than the lower plate temperature. Numerical solutions are obtained for the governing momentum and energy equations taking the Joule and viscous dissipations into consideration. The effect of the Hall term, the parameter describing the non-Newtonian behavior, and the velocity of suction and injection on both the velocity and temperature distributions are studied.


2020 ◽  
Vol 24 (2 Part B) ◽  
pp. 1067-1081
Author(s):  
Nabil El-Dabe ◽  
Galal Moatimid ◽  
Mona Mohamed ◽  
Yasmeen Mohamed

In the current paper, the peristaltic transport of a non-Newtonian fluid obeying a Casson model with heat and mass transfer inside a vertical circular cylinder is studied. The considered system is affected by a strong horizontal uniform magnetic field together with the heat radiation and the Hall current. The problem is modulated mathematically by a system of PDE that describe the basic behavior of the fluid motion. The boundary value problem is analytically solved with the appropriate boundary conditions in accordance with the special case, in the absence of the Eckert number. The solutions are obtained in terms of the modified Bessel function of the first kind. Again, in the general case, the system is solved by means of the homotopy perturbation and then numerically through the Runge-Kutta Merson with a shooting technique. A comparison is done between these two methods. Therefore, the velocity, temperature and concentration distributions are obtained. A set of diagrams are plotted to illustrate the influence of the various physical parameters in the forgoing distributions. Finally, the trapping phenomenon is also discussed.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 229 ◽  
Author(s):  
A. K. Alzahrani ◽  
S. Sivasankaran ◽  
M. Bhuvaneswari

The goal of the current numerical simulation is to explore the impact of aspect ratio, thermal radiation, and entropy generation on buoyant induced convection in a rectangular box filled with Casson fluid. The vertical boundaries of the box are maintained with different constant thermal distribution. Thermal insulation is executed on horizontal boundaries. The solution is obtained by a finite volume-based iterative method. The results are explored over a range of radiation parameter, Casson fluid parameter, aspect ratio, and Grashof number. The impact of entropy generation is also examined in detail. Thermal stratification occurs for greater values of Casson liquid parameters in the presence of radiation. The kinetic energy grows on rising the values of Casson liquid and radiation parameters. The thermal energy transport declines on growing the values of radiation parameter and it enhances on rising the Casson fluid parameter.


2014 ◽  
Vol 11 (4) ◽  
pp. 221-233 ◽  
Author(s):  
T. Hayat ◽  
Anum Tanveer ◽  
Humaira Yasmin ◽  
A. Alsaedi

This paper addresses the peristaltic flow of Eyring-Powell fluid in a symmetric channel with convective conditions. The Soret and Dufour effects are considered. Impact of first order chemical reaction is seen. The channel walls are of compliant nature. Long wavelength and low Reynolds number concepts are implemented. Resulting problems are solved for the stream function, temperature and concentration. Graphical results are presented and discussed in detail for various pertinent parameters.


1979 ◽  
Vol 36 (10) ◽  
pp. 1288-1291 ◽  
Author(s):  
Y. L. Lau

Observations of the motion of fluid particles in cylindrical sedimentation traps showed that with an increase of the aspect ratio, there is also an increase in the Reynolds number below which neutrally buoyant droplets that were placed near the floor of the trap would remain in the bottom layer. The dependence of the fluid motion on these two dimensionless variables was demonstrated using traps of different diameters. For single cylindrical traps, the experimental results can be used to obtain estimates of the Reynolds number below which resuspension of settled material would not be expected to occur. Key words: sedimentation trap, aspect ratio, Reynolds number, limnological instrument


Sign in / Sign up

Export Citation Format

Share Document