scholarly journals Tetracyclines in Processed Animal Proteins: A Monitoring Study on Their Occurrence and Antimicrobial Activity

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 696
Author(s):  
Sara Morello ◽  
Sabina Pederiva ◽  
Rosa Avolio ◽  
Giuseppina Amato ◽  
Simona Zoppi ◽  
...  

In 2013, the European Union (EU) lifted the feed ban restriction, authorizing the use of non-ruminant (NR) processed animal proteins (PAPs) as ingredient in aquafeed. A further relaxation is soon expected, and NR PAPs will be allowed in next future in poultry and pig feed, avoiding cannibalism. Other potential hazards linked to PAPs as raw material should be evaluated. Antibiotics administered along the lifecycle of animals may leave residue in tissues and bones and still be present in PAPs. This monitoring study aimed to determine tetracyclines (TCLs), known to cumulate in bones, in PAPs and their possible residual antibiotic activity (RAC). A sensitive Liquid Chromatography coupled to Tandem Mass Spectrometry (LC-MS/MS) method for the quantification of TCLs in PAPs was developed and applied to 55 PAPs from EU manufactures. Most PAP samples (n = 40) contained TCLs (concentrations 25.59 ÷ 456.84 µg kg−1). Among samples containing more than 25 µg kg−1 for at least three TCLs, three PAPs were chosen for RAC test before and after TCLs extraction procedure applying an in vitro acidic digestion: in two out of those three samples, RAC was observed after in vitro digestion. TCLs were determined in the digested PAPs (concentrations 26.07 ÷ 64.55 µg kg−1). The detection of TCLs in PAPs should promptly target the risk assessments of this unconsidered way of exposure to antibiotic residues.

2014 ◽  
Vol 57 ◽  
pp. 150-157 ◽  
Author(s):  
Guan-Lin Chen ◽  
Song-Gen Chen ◽  
Ying-Ying Zhao ◽  
Chun-Xia Luo ◽  
Juan Li ◽  
...  

2021 ◽  
Vol 28 ◽  
Author(s):  
Gabriel Prado ◽  
Isidora Pierattini ◽  
Guiselle Villarroel ◽  
Fernanda Fuentes ◽  
Alejandra Silva ◽  
...  

Background: Worldwide, the prevalence of obesity and related non-communicable chronic diseases is high and continues to grow. In that sense, anthocyanins (ANC) have shown beneficial health effects in preventing obesity and metabolic risk factors. Moreover, the demand for functional foods incorporating these compounds has risen significantly in the past years. Thus, there is a need for validations of the functional properties of these formulations; nevertheless, in vivo assays are complex and require a lot of resources. One approach for estimating bioactive compounds' functionality and health benefits is to evaluate their bioaccessibility on a specific food matrix, determined by various factors. This article aims to review different factors influencing the bioaccessibility of ANC evaluated on in vitro digestion models as a functionality parameter, elucidating the effect of chemical composition, raw materials, food matrices, and vehicles for the delivery of ANC. Methods: Study searches were performed using PubMed, Web of Science, Scopus, and Science Direct databases. Results: Different factors influenced bioaccessibility and stability of ANC studied by in vitro digestion which are: i) the raw material used for ANC obtention; ii) food processing; iii) other food components; iv) the extraction method and solvents used; v) the structure of ANC; vi) delivery system (e.g., microencapsulation); vii) pH of the medium; viii) the digestion stage. Conclusion: Simulated digestion systems allow to determine free or encapsulated ANC bioaccessibility in different food matrices, which offers advantages in determining the potential functionality of a food product.


2020 ◽  
Vol 133 ◽  
pp. 109104 ◽  
Author(s):  
Francielli P.R. de Morais ◽  
Tássia B. Pessato ◽  
Eliseu Rodrigues ◽  
Luana Peixoto Mallmann ◽  
Lilian R.B. Mariutti ◽  
...  

Foods ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 621
Author(s):  
Luisa Angiolillo ◽  
Sara Spinelli ◽  
Amalia Conte ◽  
Matteo Alessandro Del Nobile

The aim of the study was to evaluate the efficacy of extract from broccoli byproducts, as a green alternative to chemical preservation strategies for fresh filled pasta. In order to prove its effectiveness, three different percentages (10%, 15%, and 20% v/w) of extract were added to the filling of pasta. A shelf life test was carried out by monitoring microbiological and sensory quality. The content of phenolic compounds before and after in vitro digestion of pasta samples was also recorded. Results underlined that the addition of the natural extract helped to record a final shelf life of about 24 days, that was 18 days longer in respect to the control sample. Furthermore, results highlighted that the addition of byproducts extract to pasta also increased its phenolic content after in vitro digestion. Therefore, broccoli byproducts could be valorized for recording extracts that are able to prolong shelf life and increase the nutritional content of fresh filled pasta.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6667
Author(s):  
Patricia Reboredo-Rodríguez ◽  
Carmen González-Barreiro ◽  
Elena Martínez-Carballo ◽  
Noelia Cambeiro-Pérez ◽  
Raquel Rial-Otero ◽  
...  

The Mediterranean diet includes virgin olive oil (VOO) as the main fat and olives as snacks. In addition to providing nutritional and organoleptic properties, VOO and the fruits (olives) contain an extensive number of bioactive compounds, mainly phenolic compounds, which are considered to be powerful antioxidants. Furthermore, olive byproducts, such as olive leaves, olive pomace, and olive mill wastewater, considered also as rich sources of phenolic compounds, are now valorized due to being mainly applied in the pharmaceutical and nutraceutical industries. The digestive system must physically and chemically break down these ingested olive-related products to release their phenolic compounds, which will be further metabolized to be used by the human organism. The first purpose of this review is to provide an overview of the current status of in-vitro static digestion models for olive-related products. In this sense, the in-vitro gastrointestinal digestion methods are widely used with the following aims: (i) to study how phenolic compounds are released from their matrices and to identify structural changes of phenolic compounds after the digestion of olive fruits and oils and (ii) to support the functional value of olive leaves and byproducts generated in the olive industry by assessing their health properties before and after the gastrointestinal process. The second purpose of this review is to survey and discuss all the results available to date.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1748
Author(s):  
Guadalupe Lavado ◽  
Nieves Higuero ◽  
Manuel León-Camacho ◽  
Ramón Cava

The effect of nitrate/nitrite (0, 37.5, 75, and 150 mg/kg) in the dry-cured loin formulation on the formation of lipid and protein oxidation products during in vitro digestion was evaluated. Dry-cured loins formulated with nitrate/nitrite resulted in significantly less lipid and protein oxidation than uncured loins before and after simulated digestion. Compared to loins added with 0 mg/kg nitrate/nitrite, dry-cured loins with 37.5, 75, and 150 mg/kg contained a significantly lower content of conjugated dienes, malondialdehyde, carbonyls, and non-heme iron, and higher amounts of nitrosylmioglobin and thiols. During in vitro digestion, the content of conjugated dienes, malondialdehyde, and carbonyls increased, while thiol content decreased, indicating the development of lipid and protein oxidative processes. At the end of the intestinal phase, the 75 mg/kg digests had a significantly higher content of conjugated dienes, while no differences were found among the other digests. During the in vitro intestinal phase (180 and 240 min), nitrate/nitrite curing resulted in significantly lower malondialdehyde concentrations in the 37.5, 75, and 150 mg/kg loin digests than in the uncured loin digests. No significant differences were observed at the end of the intestinal digestion phase between the cured loin digests. Digests of dried loins without nitrate/nitrite addition showed higher carbonyl contents than the nitrate/nitrite cured counterparts. The loss of thiols was significantly higher in loin digests without added nitrate/nitrite than in loin digests with different amounts of curing salts. The addition of 37.5 mg/kg nitrate/nitrite in the cured loin formulation prevents the formation of lipid peroxidation products and carbonyls from protein oxidation and thiol loss during digestion


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zipporah M. Onyambu ◽  
Mildred P. Nawiri ◽  
Hudson N. Nyambaka ◽  
Naumih M. Noah

Thermal processing of leafy African indigenous vegetables (LAIVs), which are rich in nutrients, especially vitamin B series affects the levels and bioaccessibility of the vitamins. This study investigated the bioaccessibility of vitamin B series in fresh and thermally processed LAIVs. Five commonly consumed indigenous vegetables, Cleome gynadra, Vigna unguilata, Amaranthus viridis, Basella alba, and Cucurbita maxima, were processed by boiling and/or frying, treated to in vitro gastrointestinal digestion procedure, and levels of vitamin B series determined before and after treatment. The vitamin B series in fresh LAIVs ranged from 0.73 ± 0.01 mg/100 g (B9; spider plant) to 174.16 ± 3.50 mg/100 g (B2; vine spinach) and had both significant increase (ranging from +8.71% to +446.84%) and decrease (ranging from −0.44% to −100.00%) with thermal processing ( p < 0.001 ). The in vitro digestion resulted in a significant increase ( p < 0.001 ) of vitamins ranging from 5.18% (B5; boiled cowpeas) to 100% (B2, B3, and B6 in several processed vegetables). Where detected, the bioaccessible levels of vitamin B series in fresh, processed, and in vitro digested samples were sufficient to meet the Recommended Dietary Allowances (RDA) of children and adults. These findings support the promotion of a nutritional approach to malnutrition resulting from vitamin B series deficiency.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3322 ◽  
Author(s):  
Daofeng Qu ◽  
Chu Liu ◽  
Mengxue Jiang ◽  
Lifang Feng ◽  
Yuewen Chen ◽  
...  

Some studies have demonstrated that acrylamide (AA) was correlated with oxidative stress, resulting in physical damage. The jackfruit flake was an immature pulp that contained a high level of antioxidant activity. This study aimed to assess the defensive efficacy of jackfruit flake in AA-induced oxidative stress before and after simulated gastrointestinal digestion. Our results indicate that the total polyphenol content of Jackfruit flake digest (Digestive products of jackfruit flake after gastrointestinal, JFG) was diminished; however, JFG had raised the relative antioxidant capacity compared to Jackfruit flake extract (JFE). Additionally, the results of High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) implied that a proportion of compounds were degraded/converted into other unknown and/or undetected metabolites. Further, by high content analysis (HCA) techniques, JFG markedly reduced cytotoxicity and excessive production of reactive oxygen species (ROS) in cells, thereby alleviating mitochondrial disorders. In this study, it may be converted active compounds after digestion that had preferable protective effects against AA-induced oxidative damage.


Meat Science ◽  
2020 ◽  
Vol 161 ◽  
pp. 108021 ◽  
Author(s):  
Elena Antonini ◽  
Luisa Torri ◽  
Maria Piochi ◽  
Giorgia Cabrino ◽  
Maria Assunta Meli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document