scholarly journals In Vitro Bioaccessibility of the Vitamin B Series from Thermally Processed Leafy African Indigenous Vegetables

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zipporah M. Onyambu ◽  
Mildred P. Nawiri ◽  
Hudson N. Nyambaka ◽  
Naumih M. Noah

Thermal processing of leafy African indigenous vegetables (LAIVs), which are rich in nutrients, especially vitamin B series affects the levels and bioaccessibility of the vitamins. This study investigated the bioaccessibility of vitamin B series in fresh and thermally processed LAIVs. Five commonly consumed indigenous vegetables, Cleome gynadra, Vigna unguilata, Amaranthus viridis, Basella alba, and Cucurbita maxima, were processed by boiling and/or frying, treated to in vitro gastrointestinal digestion procedure, and levels of vitamin B series determined before and after treatment. The vitamin B series in fresh LAIVs ranged from 0.73 ± 0.01 mg/100 g (B9; spider plant) to 174.16 ± 3.50 mg/100 g (B2; vine spinach) and had both significant increase (ranging from +8.71% to +446.84%) and decrease (ranging from −0.44% to −100.00%) with thermal processing ( p < 0.001 ). The in vitro digestion resulted in a significant increase ( p < 0.001 ) of vitamins ranging from 5.18% (B5; boiled cowpeas) to 100% (B2, B3, and B6 in several processed vegetables). Where detected, the bioaccessible levels of vitamin B series in fresh, processed, and in vitro digested samples were sufficient to meet the Recommended Dietary Allowances (RDA) of children and adults. These findings support the promotion of a nutritional approach to malnutrition resulting from vitamin B series deficiency.

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 541
Author(s):  
Giulia Graziani ◽  
Anna Gaspari ◽  
Claudio Di Vaio ◽  
Aurora Cirillo ◽  
Carolina Liana Ronca ◽  
...  

Four different varieties of apples have been considered (Limoncella, Annurca, Red Delicious, and Golden Delicious) to estimate the extent of colon polyphenolics release after in vitro sequential enzyme digestion. Since several studies report a positive effect of apple polyphenols in colonic damage, we found of interest to investigate the colon release of polyphenols in different varieties of apples in order to assess their prevention of colonic damage. UHPLC-HRMS analysis and antioxidant activity (ABTS, DPPH, and FRAP assays) were carried out on the apple extracts (peel, flesh, and whole fruit) obtained from not digested samples and on bioaccessible fractions (duodenal and colon bioaccessible fractions) after in vitro digestion. Polyphenolic content and antioxidant activities were found to vary significantly among the tested cultivars with Limoncella showing the highest polyphenol content accompanied by an excellent antioxidant activity in both flesh and whole fruit. The overall trend of soluble antioxidant capacity from the soluble duodenal phase (SDP) and soluble colonic phase (SCP) followed the concentrations of flavanols, procyandinis, and hydroxycinnamic acids under the same digestive steps. Our results highlighted that on average 64.2% of the total soluble antioxidant activity was released in the SCP with Limoncella exhibiting the highest values (82.31, 70.05, and 65.5%, respectively for whole fruit, flesh, and peel). This result suggested that enzymatic treatment with pronase E and viscozyme L, to reproduce biochemical conditions occurring in the colon, is effective for breaking the dietary fiber-polyphenols interactions and for the release of polyphenols which can exercise their beneficial effects in the colon. The beneficial effects related to the Limoncella consumption could thus be of potential great relevance to counteract the adverse effects of pro-oxidant and inflammatory processes on intestinal cells.


2014 ◽  
Vol 57 ◽  
pp. 150-157 ◽  
Author(s):  
Guan-Lin Chen ◽  
Song-Gen Chen ◽  
Ying-Ying Zhao ◽  
Chun-Xia Luo ◽  
Juan Li ◽  
...  

2020 ◽  
Vol 133 ◽  
pp. 109104 ◽  
Author(s):  
Francielli P.R. de Morais ◽  
Tássia B. Pessato ◽  
Eliseu Rodrigues ◽  
Luana Peixoto Mallmann ◽  
Lilian R.B. Mariutti ◽  
...  

2020 ◽  
Vol 10 (11) ◽  
pp. 3668 ◽  
Author(s):  
Justyna Bochnak-Niedźwiecka ◽  
Michał Świeca

This study evaluates nutrients and health-promoting compounds responsible for antioxidant capacity in eight novel formulations based on lyophilized fruit and vegetable powders. The composition contained lyophilized carrot, pumpkin, lentil sprouts, raspberry, strawberry, and apple. The effect of functional additives on the antioxidant, nutritional, and functional characteristics of powdered beverages was determined in the powders and after rehydration followed by in vitro digestion. The antioxidant activity, phenols, vitamin C, and reducing power were significantly higher in the powders enriched with additives having potential functional properties. Furthermore, the analyses indicated that all the powdered formulations may be potential sources of total starch (100–112 mg/100 mL) and proteins (125–139 mg/100 mL). The designed powdered beverages after reconstitution exhibited high antioxidant content, reasonable consumer acceptance, and good in vitro bioaccessibility. The best results of antioxidant capacity were obtained for beverages enriched with raspberry, i.e., 10.4 mg Trolox equivalent (TE)/100 mL and 12.1 mg TE/100 mL rehydrated at 20 °C and 80 °C, respectively. Additionally, color characteristics were used as indicators of the quality of the powdered beverages. This research promotes the reduction of food waste, since whole plant tissues are used, thus allowing maximum exploitation of food raw materials; moreover, drying provides stable shelf life.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1681
Author(s):  
Constanza Pavez-Guajardo ◽  
Sandra R. S. Ferreira ◽  
Simone Mazzutti ◽  
María Estuardo Guerra-Valle ◽  
Guido Sáez-Trautmann ◽  
...  

Fruits are sources of bioactive compounds (BACs), such as polyphenols. This research aimed to study the in vitro bioaccessibility of polyphenols from enriched apple snacks with grape juice and determine their antioxidant capacity. Impregnation (I) treatments were carried out at atmospheric pressure and in a vacuum (IV) at 30, 40, and 50 °C and their combinations with ohmic heating (OH), I/OH, and IV/OH. Later, samples were dehydrated by forced convection at 40, 50, and 60 °C. Enriched samples were subjected to in vitro digestion. The total polyphenols, monomeric polyphenols, and antioxidant activities were determined from recovered extracts. Results showed that total polyphenols present in higher concentrations in the gastric phase, 271.85 ± 7.64 mg GAE/100 g d.m. Monomeric polyphenols’ behavior during in vitro digestion for the VI/OH 50 °C and dried treatment (60 °C) was descending, mainly in quercetin, which decreased by 49.38% concerning the initial concentration, before digestion. The cyanin, catechin, epicatechin, and epigallocatechin decreased by 26.66%, 20.71%, 23.38%, and 21.73%, respectively. Therefore, based on obtained results, the IV/OH 50 °C treatment (dried 60 °C) is the best combination to incorporate polyphenols from grape juice.


Foods ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 621
Author(s):  
Luisa Angiolillo ◽  
Sara Spinelli ◽  
Amalia Conte ◽  
Matteo Alessandro Del Nobile

The aim of the study was to evaluate the efficacy of extract from broccoli byproducts, as a green alternative to chemical preservation strategies for fresh filled pasta. In order to prove its effectiveness, three different percentages (10%, 15%, and 20% v/w) of extract were added to the filling of pasta. A shelf life test was carried out by monitoring microbiological and sensory quality. The content of phenolic compounds before and after in vitro digestion of pasta samples was also recorded. Results underlined that the addition of the natural extract helped to record a final shelf life of about 24 days, that was 18 days longer in respect to the control sample. Furthermore, results highlighted that the addition of byproducts extract to pasta also increased its phenolic content after in vitro digestion. Therefore, broccoli byproducts could be valorized for recording extracts that are able to prolong shelf life and increase the nutritional content of fresh filled pasta.


2017 ◽  
Vol 65 (50) ◽  
pp. 11109-11117 ◽  
Author(s):  
Li Liang ◽  
Ce Qi ◽  
Xingguo Wang ◽  
Qingzhe Jin ◽  
David Julian McClements

Nutrients ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 912 ◽  
Author(s):  
Valeria Felice ◽  
Denise O’Gorman ◽  
Nora O’Brien ◽  
Niall Hyland

Introduction: Magnesium is an essential mineral involved in a range of key biochemical pathways. Several magnesium supplements are present on the market and their degree of bioavailability differs depending on the form of magnesium salt used. Aquamin-Mg is a natural source of magnesium, containing 72 additional trace minerals derived from the clean waters off the Irish coast. However, the in vitro bioaccessibility and bioavailability of Aquamin-Mg in comparison with other supplement sources of magnesium has yet to be tested. Method: Aquamin-Mg, magnesium chloride (MgCl2) and magnesium oxide (MgO) were subjected to gastrointestinal digestion according to the harmonized INFOGEST in vitro digestion method and in vitro bioavailability tested using the Caco-2 cell model. Magnesium concentration was measured by atomic absorption spectrophotometry (AAS). Results: Magnesium recovery from both Aquamin-Mg and MgCl2 was greater than for MgO. Magnesium from all three sources was transported across the epithelial monolayer with Aquamin-Mg displaying a comparable profile to the more bioavailable MgCl2. Conclusions: Our data support that magnesium derived from a marine-derived multimineral product is bioavailable to a significantly greater degree than MgO and displays a similar profile to the more bioavailable MgCl2 and may offer additional health benefits given its multimineral profile.


Sign in / Sign up

Export Citation Format

Share Document