scholarly journals Improved Lycopene Production from Different Substrates by Mated Fermentation of Blakeslea Trispora

Foods ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 120 ◽  
Author(s):  
Ayse Sevgili ◽  
Osman Erkmen

The production of lycopene from different substrates by Blakeslea trispora in fermentation was investigated. Lycopene productions from 4 and 6% glucose (pH 6.5) in shake flask fermentation were 77.7 and 28.1 mg L−1. Increasing the glucose concentration to 6% resulted in a decrease in lycopene production by 36.2%. A maximum lycopene concentration of 944.8 mg L−1 was detected with 4% glucose supplemented with 1.0 % sunflower oil in fermentor studies. Lycopene productions in the presence of sunflower and corn oils in the fermentor were 12.2 and 11.1 times higher, respectively, then without oil from 4 % glucose in a shake flask. Lycopene production from orange peel was two times higher in the fermentor than in the shake flask. Zygospores of B. trispora are the morphological forms, which are responsible for the production of the lycopene. The highest level of zygospores was correlated with the highest amount of intracellular lycopene in the total biomass dry weight. The media containing only orange powder (1%) gave a 4.9 mg L−1 lycopene production in a fermentor. The biosynthesis of lycopene has been started in most cases simultaneously in the early growth phase even in trace amounts. Maximum lycopene concentration was obtained when the medium was supplied with sunflower and corn oils. There is an indirect relationship between biomass and lycopene concentration.

Author(s):  
Osman Erkmen ◽  
Ayse Sevgili

The production of lycopene from different substrates by Blakeslea trispora in fermentation was investigated. Lycopene productions from 4 and 6 % glucose (pH 6.5) in shake flask fermentation were 77.7 and 28.1 mg L-1. A maximum lycopene concentration of 944.8 mg L-1 was detected with 4 % glucose supplemented with 1.0 % sunflower oil in fermentor studies. Zygospores of B. trispora are the morphological forms, which are responsible for the production of the lycopene. The highest level of zygospores was correlated with the highest amount of intracellular lycopene in the total biomass dry weight. The media containing only orange peel (1 %) gave a 4.9 mg L-1 lycopene production in a fermentor. The presence of oils as substrates resulted in enhanced mold growth and subsequent higher lycopene production. Substrates containing linoleic acid compounds led to high lycopene production. The data showed that the biosynthesis of lycopene starts in most cases simultaneously in the early growth phase even in trace amounts and the amount of lycopene formation increased continuously from 2 to 7 days.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Feng Lingran ◽  
Wang Qiang ◽  
Yu Xiaobin ◽  
Fred Kwame

Abstract Exogenous lipids serving as stimulators to improve lycopene production in Blakeslea trispora have been widely reported. However, the selection basis of exogenous lipids and their effects on intracellular lipids are not very clear. In this study, five plant oils with different fatty acid compositions were selected to investigate their effects on lycopene production, fatty acid composition and the desaturation degree of intracellular lipids. Among the oils, soybean oil, with a fatty acid composition similar to that of mycelium, exhibited the best stimulating effect on lycopene formation (improvement of 82.1%). The plant oils enhanced the total content of intracellular lipids and the desaturation degree of reserve lipids due to the alteration of fatty acid composition, especially in neutral lipids. Lycopene production was increased with the improved desaturation degree of intracellular lipids, which may be attributed to the enhancement of storage capacity for lycopene in storage lipid, thus reducing the feedback regulation of free lycopene. In addition, the increase of the desaturation degree of reserve lipids through temperature-changing fermentation also enhanced lycopene production. The present study could serve as a basis for a better understanding of the relationship between the fatty acid composition of reserve lipids and lycopene production.


2020 ◽  
Vol 18 (1) ◽  
pp. 1093-1104
Author(s):  
Grzegorz Kulczycki ◽  
Elżbieta Sacała

AbstractThis study aimed to examine the influence of increasing doses of chromium (Cr) (26, 39, and 52 mg kg−1 soil) and elemental sulfur (S) (60 mg kg−1 soil) on growth, yield, and mineral nutrition in wheat and maize. Macro- and micronutrients and Cr concentrations were determined in the aboveground parts of plants. All examined doses of Cr caused a marked decrease in the fresh and dry weight of maize. Wheat was more tolerant than maize, and lower Cr doses caused a small but statistically significant increase in the total yield. Wheat accumulated more than twofold Cr than maize, and the concentrations increased with higher Cr concentrations in the soil. The application of S significantly improved the total biomass production and lowered the Cr content in both plants. Cr changed the mineral nutrition in both cereals, but the pattern of changes observed was not the same. Applying S alleviated some adverse effects caused by the Cr. Hence, it is concluded that the application of elemental S may be an effective strategy to reduce adverse effects in plants grown on soil contaminated by heavy metals, especially Cr.


2021 ◽  
Vol 325 (4) ◽  
pp. 502-515
Author(s):  
S.F. Komulaynen

The freshwater pearl mussel Margaritifera margaritifera (Linnaeus,1758) is endangered in Europe and is now listed in the Red Data Book of many countries and regions. The diet of the species in the Syskyänjoki River (a tributary of Lake Ladoga) has been studied. The contents of the intestine generally correspond to the composition of seston, and include organic detritus, filamentous and unicellular algae, fragments of invertebrates and macrophyte tissues mixed with silt and sand. The total biomass of the intestinal contents of varied from 0.8 to 30.6 mg per organism (absolutely dry weight). Margaritifera margaritifera consumes a wide range of particles, from 0.5 μm3 (bacteria and unicellular algae) to 200 000 μm3 (fragments of invertebrates and macrophyte tissues). About 90–95% (by volume) of the intestinal contents was consisted by fine organic detritus. The food composition did not differ significantly for mollusks of different sexes and size. In the intestinal contents, 63 taxa of algae were identified. The number of algal species in the content of one intestine varied from 3 to 17, with their abundance from 250 to 9560 cells per organism. The most abundant and constant in the contents of the intestines are unicellular algae. Diatoms are the most diverse, they make up 50.8% of the total number of species.


2009 ◽  
pp. 131-139 ◽  
Author(s):  
Marija Skrinjar ◽  
Anamarija Mandic ◽  
Aleksandra Misan ◽  
Marijana Sakac ◽  
Ljubisa Saric ◽  
...  

An inhibitory effect of various concentrations (0.0, 0.5, 1.0, 1.5 and 2,0%) of mint (Mentha piperita L.) and caraway (Carvum carvi L.) on the growth of A. fumigatus, A. flavus and A. ochraceus was examined during 10 days of cultivation in YES medium at temperature of 25?C. Mint showed stronger inhibitory effect than caraway. Total dry weight (g/l) after 10 days of the growth of A. fumigatus in YES medium with 0.5% of mint decreased by about 95%, A. flavus by 97% and A. ochraceus by about 82%. Addition of higher concentrations of mint (1.0, 1.5 and 2.0%) reduced the growth of all tested species. It was poor and hardly visible. pH values of the media increased with the increase of mint concentrations. A. fumigatus showed the highest sensitivity towards caraway and A. flavus the lowest. Total dry weight (g/l) after 10 days of growth of A. fumigatus in medium with 0.5% of caraway decreased by about 72% in comparison to the control. In media with higher concentrations of caraway, its growth was found to be very poor. Concentration of 1.0% of caraway reduced A. flavus growth by 15% and of 1.5% by 92%, in regard to the control. In medium with 2.0% of caraway the growth of A. flavus was observed as poor and hardly visible. The growth of A. ochraceus in medium with 0.5% of caraway decreased by about 85% comparing with control and further decrease was noticed by the increase of concentrations. In medium with 1.5% of caraway a reduction of about 95% of growth was found and under 2.0% of caraway it was poor. pH of the media also increased with the increase of caraway concentrations. Applied concentrations of mint and caraway inhibited completely the production of AB1 by A. flavus.


2021 ◽  
Vol 2 ◽  
pp. 131-138
Author(s):  
Nandung Erlanda ◽  
Feira B. Arief ◽  
Ismahan Umran ◽  
Sutarman Gafur ◽  
Denah Suswati

Azotobacter nitrogen-fixing bacteria and urea fertilizer to reduce excessive use of chemical fertilizers. These bacteria can play a role in increasing nitrogen uptake and further growth of soybean plants. This study aimed to obtain growth media for Azotobacter and increase plant and root growth and nitrogen uptake of Biosoy soybean varieties. The research was conducted to help the uptake of n in the soil and reduce the excessive use of chemical fertilizers. The first experiment was carried out by growing bacteria on the media for 120 hours. The second experiment was designed in a completely randomized design that tested two treatments with additional use of urea fertilizer and Azotobacter and no Azotobacter. The results showed that there was no effect of giving Azotobacter from aloe vera gardens, and urea fertilizer showed a significant effect on the observed variables of soil pH in soybean plants on peat soil. In contrast, the variables observed were population, plant height, N content, N-total, plant dry weight, dry weight of plant roots, and N span of soybean plants had no significant effect.


Author(s):  
Sonia Martínez-Cámara ◽  
Sara Rubio ◽  
Hannah del Río ◽  
Marta Rodríguez-Sáiz ◽  
José-Luis Barredo

2001 ◽  
Vol 67 (11) ◽  
pp. 5254-5260 ◽  
Author(s):  
Yves Poirier ◽  
Nadine Erard ◽  
Jean MacDonald-Comber Petétot

ABSTRACT Medium-chain-length polyhydroxyalkanoates (PHAs) are polyesters having properties of biodegradable thermoplastics and elastomers that are naturally produced by a variety of pseudomonads.Saccharomyces cerevisiae was transformed with thePseudomonas aeruginosa PHAC1 synthase modified for peroxisome targeting by the addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. The PHAC1 gene was put under the control of the promoter of the catalase A gene. PHA synthase expression and PHA accumulation were found in recombinantS. cerevisiae growing in media containing fatty acids. PHA containing even-chain monomers from 6 to 14 carbons was found in recombinant yeast grown on oleic acid, while odd-chain monomers from 5 to 15 carbons were found in PHA from yeast grown on heptadecenoic acid. The maximum amount of PHA accumulated was 0.45% of the dry weight. Transmission electron microscopy of recombinant yeast grown on oleic acid revealed the presence of numerous PHA inclusions found within membrane-bound organelles. Together, these data show that S. cerevisiae expressing a peroxisomal PHA synthase produces PHA in the peroxisome using the 3-hydroxyacyl coenzyme A intermediates of the β-oxidation of fatty acids present in the media. S. cerevisiaecan thus be used as a powerful model system to learn how fatty acid metabolism can be modified in order to synthesize high amounts of PHA in eukaryotes, including plants.


2012 ◽  
Vol 58 (No. 5) ◽  
pp. 230-235 ◽  
Author(s):  
Manoj-Kumar ◽  
A. Swarup ◽  
A.K. Patra ◽  
J.U. Chandrakala ◽  
K.M. Manjaiah

In a phytotron experiment, wheat was grown under two levels of atmospheric CO<sub>2</sub> [ambient (385 ppm) vs. elevated (650 ppm)], two levels of temperature (ambient vs. ambient +3&deg;C) superimposed with three levels of phosphorus (P) fertilization: 0, 100, and 200% of recommended dose. Various measures of P acquisition and utilization efficiency were estimated at crop maturity. In general, dry matter yields of all plant parts increased under elevated CO<sub>2</sub> (EC) and decreased under elevated temperature (ET); however, under concurrently elevated CO<sub>2</sub> and temperature (ECT), root (+36%) and leaf (+14.7%) dry weight increased while stem (&ndash;12.3%) and grain yield (&ndash;17.3%) decreased, leading to a non-significant effect on total biomass yield. Similarly, total P uptake increased under EC and decreased under ET, with an overall increase of 17.4% under ECT, signifying higher P requirements by plants grown thereunder. Although recovery efficiency of applied P fertilizer increased by 27%, any possible benefit of this increase was negated by the reduced physiological P efficiency (PPE) and P utilization efficiency (PUtE) under ECT. Overall, there was ~17% decline in P use efficiency (PUE) (i.e. grain yield/applied P) of wheat under ECT. &nbsp;


Sign in / Sign up

Export Citation Format

Share Document