scholarly journals Benefits of the Use of Lactic Acid Bacteria Starter in Green Cracked Cypriot Table Olives Fermentation

Foods ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 17 ◽  
Author(s):  
Dimitrios A. Anagnostopoulos ◽  
Vlasios Goulas ◽  
Eleni Xenofontos ◽  
Christos Vouras ◽  
Nikolaos Nikoloudakis ◽  
...  

Table olives are one of the most established Mediterranean vegetables, having an exponential increase consumption year by year. In the natural-style processing, olives are produced by spontaneous fermentation, without any chemical debittering. This natural fermentation process remains empirical and variable since it is strongly influenced by physicochemical parameters and microorganism presence in olive drupes. In the present work, Cypriot green cracked table olives were processed directly in brine (natural olives), using three distinct methods: spontaneous fermentation, inoculation with lactic acid bacteria at a 7% or a 10% NaCl concentration. Sensory, physicochemical, and microbiological alterations were monitored at intervals, and major differences were detected across treatments. Results indicated that the predominant microorganisms in the inoculated treatments were lactic acid bacteria, while yeasts predominated in control. As a consequence, starter culture contributed to a crucial effect on olives fermentation, leading to faster acidification and lower pH. This was attributed to a successful lactic acid fermentation, contrasting the acetic and alcoholic fermentation observed in control. Furthermore, it was established that inhibition of enterobacteria growth was achieved in a shorter period and at a significantly lower salt concentration, compared to the spontaneous fermentation. Even though no significant variances were detected in terms of the total phenolic content and antioxidant capacity, the degradation of oleuropein was achieved faster in inoculated treatments, thus, producing higher levels of hydroxytyrosol. Notably, the reduction of salt concentration, in combination with the use of starter, accented novel organoleptic characteristics in the final product, as confirmed from a sensory panel; hence, it becomes obvious that the production of Cypriot table olives at reduced NaCl levels is feasible.

2018 ◽  
Vol 69 (3) ◽  
pp. 265
Author(s):  
A. Alfonzo ◽  
A. Martorana ◽  
L. Settanni ◽  
M. Matraxia ◽  
O. Corona ◽  
...  

The present research aimed at determining the optimal conditions for the lactic acid fermentation of green Spanish-style table olives. The work is a follow-up, and focuses on the performance of the commercial starter strain Lactobacillus pentosus OM13 by applying an acclimatization step and the addition of nutrients, and concentrations of lactic acid that were previously investigated. The acclimatization of the cells warranted the dominance of the starter culture even at an inoculation level of 2 Log cycles lower than that commonly used in standard fermentation. A significant effect was found in terms of acidification kinetics within the first week of fermentation, with the highest decrease in pH, at ~2.5 units, which occurred in the trial and after inoculation with 106 CFU/mL of starter after acclimatation (EO3) that showed values similar to control C obtained with Lactobacillus pentosus OM13 at a concentration of 107 CFU/mL. After day 3, further decreases in pH of up to 4.30 were observed until day 30, and then these values remained almost constant until the end of process (day 190) when lower pH values were reached for trial EO3 and control C. The results of microbiological dynamics, the changes in VOCs and finally the effect of the processes on the sensory analysis of the fermented product were investigated by multivariate analysis. The acclimatization process and the initial inoculation level influenced the bacterial microflora, aromatic compounds and organoleptic characteristics of the final product. Finally, the trials C, EO2 and EO3 showed higher values (60-80%) of preferences and satisfaction compared to other experimental productions.


2021 ◽  
Vol 72 (2) ◽  
pp. e405
Author(s):  
Z.Ş. Erdemir Tıraş ◽  
H. Kalkan Yıldırım

The fermentation of olives is usually carried out spontaneously by natural microbiota. Spontaneous fermentation has some disadvantages, such as the formation of defects in the end product due to the activities of undesirable microorganisms. The use of starter cultures could be a promising option to provide a more controlled fermentation environment and to reduce the risk of spoilage. Mixed starter culture use (generally selected Lactobacillus strains with or without yeasts) could reduce pH in a shorter time, producing a higher amount of lactic acid and enhancing microbial safety compared to fermentation with starter cultures containing single species or natural fermentation. Their use could also enhance the organoleptical properties of table olives. Particularly the use of yeast (such as strains of W. anomolus, S. cerevisiae) in the fermentation of olives, in combination or sequentially with lactic acid bacteria could result in an increase in volatile compounds and a more aromatic final product.


2015 ◽  
Vol 64 (3) ◽  
pp. 265-271 ◽  
Author(s):  
Marina Papadelli ◽  
Georgia Zoumpopoulou ◽  
Marina Georgalaki ◽  
Rania Anastasiou ◽  
Eugenia Manolopoulou ◽  
...  

The production of Greek-style natural black table olives remains an empirical process relying on spontaneous fermentation despite its economic significance. For this reason producers often resort to increased NaCl concentration of the brine to secure quality of the product. In this study we employ two lactic acid bacteria Leuconostoc mesenteroides subsp. mesenteroides Lm139 and Lactobacillus pentosus DSM 16366 as starters in separate laboratory low salinity fermentations of “Kalamon” cultivar olives, processed according to the Greek-style method. L. mesenteroides subsp. mesenteroides Lm139 was previously isolated from Kalamon olives laboratory spontaneous fermentations, while L. pentosus DSM 16366 was isolated from fermenting green olives prepared according to the Spanish-style method. Spontaneous olives fermentation was also performed as a control. Microbiological and physicochemical analyses of the brines revealed that the use of the starters had a significant effect on the olives fermentation, leading to a faster acidification due to the more efficient consumption of soluble sugars in the brines. The final pH value reached by each starter culture used indicates a successful lactic fermentation. The production of lactic acid by the starters and the concomitant drop of the pH value proved to inhibit enterobacteria in a shorter period of time compared to the spontaneous fermentation. Concluding, the use of either of the two lactic acid bacteria as starters in Greek-style Kalamon olives fermentation could lead to a more controllable fermentation at lower salinities. The resulting product could be of higher quality with extended shelf-life while being at the same time safer for the consumer.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6064
Author(s):  
Snezana Agatonovic-Kustrin ◽  
Ksenia S. Balyklova ◽  
Vladimir Gegechkori ◽  
David W. Morton

The effect of spontaneous fermentation by lactic acid bacteria on the extraction yield of bioactive compounds and antioxidant activity from rosemary leaf extracts was investigated using high-performance thin-layer chromatography (HPTLC). Brining and spontaneous fermentation with lactic acid bacteria more than doubled extraction of polyphenolics and antioxidants from the rosemary leaves. The results show that lactic acid fermentation enhances antioxidant activity in extracts by increasing the total phenolic content but does not increase extraction of phytosterols. Increased extraction of phenolic oxidants during fermentation assisted extraction, results from the in situ generated natural eutectic solvent from the plant sample. ATR-FTIR spectra from the bioactive bands suggests that this increased antioxidant activity is associated with increased extraction of rosmarinic acid, depolymerised lignin, abietane diterpenoids and 15-hydroxy-7-oxodehydroabietic acid.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1737
Author(s):  
Wendy Franco ◽  
Sergio Benavides ◽  
Pedro Valencia ◽  
Cristian Ramírez ◽  
Alejandra Urtubia

Grapes are a source of native yeasts and lactic acid bacteria (LAB); however, the microbial make up is dependent on the grape cultivar and the regional growth conditions. Therefore, the aim of this study was to characterize the yeast and LAB in seven grape cultivars cultivated in Chile. Grape juices were fermented at 25 °C for 7 days. Samples were collected to analyze sugar, organic acids, and ethanol. Microbial evolution was measured with culture-dependent and molecular approaches. Then, a native isolated Candida oleophila was selected for further sequential fermentations with Saccharomyces cerevisiae. The grape cultivars in the Maule showed a diversity of non-Saccharomyces yeasts, with a greater diversity observed at the beginning of the fermentation. However, species from the Hansenasporia, Metschnikowia, Torulaspora, Lachancea, and Candida genera were detected after 7 days, suggesting tolerance to environments rich in ethanol, capability may be associated to the terroir studied, which is characterized by torrid weather and antique and traditional vineyards. The alcoholic fermentation negatively impacted the LAB population, and after 7 days only Leuconostoc mesenteroides was isolated. In the sequential fermentations, C. oleophila was able to produce fermented grape juices with <1.5 g/L glucose, 12.5% (v/v) alcohol, and low concentrations of malic (<1.00 g/L) and succinic (2.05 g/L) acids, while acetic acid reached values >0.3 (g/L). To our knowledge this is the first time C. oleophila has been reported as a potential starter culture for wine production. However, more studies are necessary to fully characterize the potential of C. oleophila on wine attributes.


2019 ◽  
Vol 366 (Supplement_1) ◽  
pp. i60-i67
Author(s):  
Mette Lübeck ◽  
Peter Stephensen Lübeck

ABSTRACT Lactic acid bacteria (LAB) have extensive industrial applications as producers of lactic acid, as probiotics, as biocontrol agents and as biopreservatives. LAB play a large role in food fermentation and in silage processes, where crops such as grass, legumes, cereals or corn are fermented into high-moisture feed that is storable and can be used to feed cattle, sheep or other ruminants. LAB also have great applications within green biorefineries, with simultaneous production of protein-rich feed for monogastric animals, silage or feed pellets for ruminants and production of lactic acid or specific amino acids. In green biorefineries, fresh or ensiled wet biomass is mechanically fractionated into green juice and solid residues (press cake), where the plant juice, for example, can be used for production of lactic acid using LAB. In a process named ‘ENLAC’, recovery of protein and chlorophyll from silage by simultaneous lactic acid fermentation and enzyme hydrolysis has been developed. Furthermore, a process for protein recovery was recently developed by applying a specific LAB starter culture to green juice from freshly harvested crops. This paper focuses on reviewing LAB for their applications within biorefining of ‘green’ crops such as clover, alfalfa, grasses and other green plant materials.


2015 ◽  
Vol 1 (1) ◽  
pp. 26-33
Author(s):  
IRA ERDIANDINI ◽  
TITI CANDRA SUNARTI ◽  
ANJA MERYANDINI

The development of industrial fermentation food could not separate with the availability of culture starter that suffice to support its production. Dried starter can be an option to use in fermentation industry because it can be stored for longer time without rejuvenation. However, in the process of production of dried starter needs the matrix to maintain cell viability, economically and availability of raw material. This research was conducted to use selected dried starter of indigenous lactic acid bacteria by using sour cassava starch matrix. Eleven local isolates lactic acid bacteria isolates from spontaneous fermentation of carbohydrates commodity were selected based on their acid production capabilities and antibiotics susceptibilities. Isolate of E 1222 showed the best result and was identified as Pediococcus pentosaceus. The isolate was encapsulated with sour cassava starch matrix for making dried starter by using freeze dryer and spray dryer. Freeze dried starter culture could maintained the cell viability higher than spray dried starter culture i.e 10.34 log CFU/g and 8.91 log CFU/g, respectively. Finally, freeze dried starter culture could maintain the percentage of cell viability until 89.38% during four-weeks storage at 4 oC. 


2020 ◽  
Vol 8 (8) ◽  
pp. 1176 ◽  
Author(s):  
Tolulope Ashaolu ◽  
Anna Reale

Lactic acid fermentation is one of the oldest methods used worldwide to preserve cereals and vegetables. Europe and Asia have long and huge traditions in the manufacturing of lactic acid bacteria (LAB)-fermented foods. They have different cultures, religions and ethnicities with the available resources that strongly influence their food habits. Many differences and similarities exist with respect to raw substrates, products and microbes involved in the manufacture of fermented products. Many of them are produced on industrial scale with starter cultures, while others rely on spontaneous fermentation, produced homemade or in traditional events. In Europe, common LAB-fermented products made from cereals include traditional breads, leavened sweet doughs, and low and non-alcoholic cereal-based beverages, whereas among vegetable ones prevail sauerkraut, cucumber pickles and olives. In Asia, the prevailing LAB-fermented cereals include acid-leavened steamed breads or pancakes from rice and wheat, whereas LAB-fermented vegetables are more multifarious, such as kimchi, sinki, khalpi, dakguadong, jiang-gua, soidon and sauerkraut. Here, an overview of the main Euro-Asiatic LAB-fermented cereals and vegetables was proposed, underlining the relevance of fermentation as a tool for improving cereals and vegetables, and highlighting some differences and similarities among the Euro-Asiatic products. The study culminated in “omics”-based and future-oriented studies of the fermented products.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Elizaveta Gavrilova ◽  
Elizaveta Anisimova ◽  
Alsu Gabdelkhadieva ◽  
Elena Nikitina ◽  
Adel Vafina ◽  
...  

Abstract Background Raw milk, meat and plant materials are subjected to high risks of contamination by various pathogenic bacteria and thus their growth prevention is a great challenge in the food industry. Food fermentation by lactic acid bacteria (LAB) besides changing its organoleptic characteristics also helps to eliminate unfavorable microflora and represses growth of pathogens. To the date only few LABs has been reported to exhibit activity against bacteria embedded in the biofilms characterized by extreme resistance to antimicrobials, high exchange rate with resistance genes and represent high risk factor for foodborne disease development. Results Six novel LAB strains isolated from the clover silage exhibited pronounced antibacterial activity against biofilm embedded pathogens. We show explicitly that these strains demonstrate high acidification rate, completely repress the growth of E. coli, S. aureus and to a lesser extent P. aeruginosa as well as exhibit appropriate probiotic and milk-fermenting properties. Moreover, in contrast to the approved probiotic strain Lactobacillus plantarum 8PA3, the new isolates were able to efficiently eradicate preformed biofilms of these pathogens and prevent bacterial spreading originating from the biofilm. We suggest these strains as potential additives to the pre-cultures of conventional LAB strains as efficient tools targeting foodborne pathogens in order to prevent food contamination from either seeded raw material or biofilm-fouled equipment. Conclusions The AG10 strain identified as L. plantarum demonstrate attractive probiotic and milk fermentation properties as well as high resistance to simulated gastric conditions thus appearing perspective as a starter culture for the prevention of bacterial contamination originating from fouled equipment during milk fermentation.


2019 ◽  
Vol 82 (1) ◽  
Author(s):  
Mohamad Sufian So'aib ◽  
Ku Halim Ku Hamid ◽  
Jailani Salihon ◽  
Huey Ling Tan

The spontaneous fermentation was carried out on Carica papaya leaf (CPL) in view of its potential improvement on antioxidant functionality and cultivation of lactic acid bacteria. The effect of the spontaneous fermentation on the total phenolic content and antioxidant activity of CPL, as well as biodiversity profiling were evaluated in this study. Total phenolic content and antioxidant capacity of the fermented CPL were 31.14 mg GAE g-1 and 405.8 mM TE g-1 respectively, higher than the unfermented CPL (5.71 mg GAE/g and 130.5 mM TE g-1) respectively. Microbial community was predominantly lactic acid bacteria (LAB) and yeasts, both populated at 104 to 108 CFU/mL during most part of the fermentation. Presumptive Enterobacteriaceae showed up briefly at the onset of the fermentation before disappearing. PCR-DGGE fingerprinting revealed Lactobacillus plantarum (Lb. plantarum) as the sole dominant bacterial species. More diverse yeasts community was detected by PCR-DGGE where succession of Zygosaccharomyces, Saccharomyces, Candida and Aspergillus genera were detected along fermentation time. Spontaneous fermentation successfully enhanced the total phenolic content and antioxidant capacity of the CPL. The cultivation of lactic acid bacteria was indicated by the presence of Lb. plantarum, whereas the disappearance of Enterobacteriaceae conferred a safe consumption of the fermented CPL.


Sign in / Sign up

Export Citation Format

Share Document