scholarly journals The Effect of Halloysite Addition on the Material Properties of Chitosan–Halloysite Hydrogel Composites

Gels ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 40 ◽  
Author(s):  
Luo ◽  
Mills

Chitosan-based hydrogels are being widely used in biomedical applications due to their eco-friendly, biodegradable, and biocompatible properties, and their ability to mimic the extracellular matrix of many tissues. However, the application of chitosan hydrogels has been limited due to their inherent mechanical weakness. Halloysite nanotubes (HNTs) are naturally occurring aluminosilicate clay minerals and are widely used as a bulk filler to improve the performance characteristics of many polymeric materials. HNTs have also been shown to be a viable nanocontainer able to provide the sustained release of antibiotics, chemicals, and growth factors. This study’s objective was to develop a stable drug delivery chitosan/HNT nanocomposite hydrogel that is biocompatible, biodegradable, and provides sustained drug release. In this study, chitosan/HNTs hydrogels containing undoped or gentamicin-doped HNTs were combined in different wt./wt. ratios and cross-linked with tripolyphosphate. The effects of chitosan and HNTs concentration and combination ratios on the hydrogel surface morphology, degradability, and mechanical properties, as well as its drug release capability, were analyzed. The results clearly showed that the addition of HNTs improved chitosan mechanical properties, but only within a narrow range. The nanocomposite hydrogels provided a sustained pattern of drug release and inhibited bacterial growth, and the live/dead assay showed excellent cytocompatibility.

2022 ◽  
Vol 23 (2) ◽  
pp. 610
Author(s):  
Teresa Aditya ◽  
Jean Paul Allain ◽  
Camilo Jaramillo ◽  
Andrea Mesa Restrepo

Bacterial cellulose is a naturally occurring polysaccharide with numerous biomedical applications that range from drug delivery platforms to tissue engineering strategies. BC possesses remarkable biocompatibility, microstructure, and mechanical properties that resemble native human tissues, making it suitable for the replacement of damaged or injured tissues. In this review, we will discuss the structure and mechanical properties of the BC and summarize the techniques used to characterize these properties. We will also discuss the functionalization of BC to yield nanocomposites and the surface modification of BC by plasma and irradiation-based methods to fabricate materials with improved functionalities such as bactericidal capabilities.


RSC Advances ◽  
2018 ◽  
Vol 8 (24) ◽  
pp. 13284-13291 ◽  
Author(s):  
Qiaomei Luo ◽  
Yangyang Shan ◽  
Xia Zuo ◽  
Jiaqi Liu

Tough PVA/GO nanocomposite hydrogel with well-developed anisotropic microstructure and excellent mechanical properties.


2019 ◽  
Vol 9 (3) ◽  
pp. 3926-3933 ◽  

Although, there have been numerous efforts in synthesis of polymers, their mechanical properties have limited their applications. Graphene has been investigated for excellent properties such as superior mechanical properties, high thermal conductivity that has attracted the attention of scientific community to employ graphene as a filler material in polymeric matrices to form composites with multi-functional capabilities. The excellent properties possessed by Graphene has motivated users to fabricate flexible nanocomposites that can be used for applications requiring superior mechanical, chemical and thermal performances. Characteristics of both the components if explored synergistically through proper structural and interfacial organization. The investigation in this direction has resulted into combination of graphene with variety of polymeric materials and hence the development of different graphene-based nanocomposites. The present work reviews the application of graphene-based nanocomposites in the biomedical domain. With this objective, the polymeric matrices suitable for biomedical applications as well as the techniques of producing graphene polymeric nanocomposites have been discussed. Finally the application particularly in biosensing, wound healing and drug delivery system has been discussed.


2018 ◽  
Vol 55 (3) ◽  
pp. 263-268
Author(s):  
Ionut Cristian Radu ◽  
Eugeniu Vasile ◽  
Celina Maria Damian ◽  
Horia Iovu ◽  
Paul Octavian Stanescu ◽  
...  

The paper focuses on the obtaining of novel nanocomposite hydrogels based on polyacrylamide and layered double hydroxides (LDHs) modified with double bonds. The modification of LDH clay was investigated by FTIR, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analyses. Mechanical properties of the nanocomposite hydrogels were employed by compression and rheological measurements. The formation of exfoliated and intercalated structures was evidenced in transmission electron microscopy (TEM). Chemical cross-linking of hydrogels using both classical cross-linker and modified clay was an efficient method to improve the mechanical properties of novel nanocomposite hydrogels. These hydrogels with improved mechanical properties could be further tested for biomedical applications such as tissue engineering.


2018 ◽  
Vol 919 ◽  
pp. 144-151 ◽  
Author(s):  
Ľudmila Dulebová ◽  
Karolina Glogowska ◽  
Jaroslav Hájek ◽  
Jakub Fic

Reinforcing thermoplastic polymers with nanotubes or nanoplatelets to form nanocomposites is a way to increase the usage of polymeric materials in engineering applications by improving their mechanical properties. The contribution presents the results of research from basic processing and mechanical properties of nanocomposites. Low-Density Polyethylene (LDPE) was used as a matrix for experiments. The material LDPE was modified by Halloysite nanotubes (HNT) with a mass share of 2, 4, 6 wt% of the matrix. Nanocomposites were filled with 5 wt% Polyethylene grafted with maleic anhydride (PE-graft-MA) as a compatibilizer. The specimens were prepared by injection molding and their selected mechanical properties were tested by static tensile test, Charpy impact test and Shore hardness test.


Author(s):  
Nengda Jiang ◽  
Sirish Namilae ◽  
Vinu Unnikrishnan

Abstract Silicone-based biofidelic surrogates are used in many biomedical applications. Apart from mimicking the mechanical behavior of bodily tissues, there is an increasing requirement for these materials to be electrically conductive and piezoresistive to facilitate direct instrumentation. Carbon nanotubes (CNTs) have been extensively investigated as fillers to impart electrical conductivity and piezoresistivity to polymeric materials including silicone. In this paper, we fabricate, test, and characterize a two-part silicone/CNT sheet sandwich composites that exhibit conductivity, piezoresistivity, and biofidelic with mechanical properties corresponding to that of the white matter of human brain tissue. The electromechanical performance of the sandwich composite improves in subsequent loading after the core fracture during initial loading. Analytical models developed for discontinuous core sandwich structures are used to analyze and explain the experimental results. The results indicate the potential for using this discontinuous core biofidelic-piezoresistive sandwich nanocomposite for biomedical applications without deploying external deformation sensors.


Sign in / Sign up

Export Citation Format

Share Document