scholarly journals Retinal miRNA Functions in Health and Disease

Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 377 ◽  
Author(s):  
Marta Zuzic ◽  
Jesus Eduardo Rojo Arias ◽  
Stefanie Gabriele Wohl ◽  
Volker Busskamp

The health and function of our visual system relies on accurate gene expression. While many genetic mutations are associated with visual impairment and blindness, we are just beginning to understand the complex interplay between gene regulation and retinal pathologies. MicroRNAs (miRNAs), a class of non-coding RNAs, are important regulators of gene expression that exert their function through post-transcriptional silencing of complementary mRNA targets. According to recent transcriptomic analyses, certain miRNA species are expressed in all retinal cell types, while others are cell type-specific. As miRNAs play important roles in homeostasis, cellular function, and survival of differentiated retinal cell types, their dysregulation is associated with retinal degenerative diseases. Thus, advancing our understanding of the genetic networks modulated by miRNAs is central to harnessing their potential as therapeutic agents to overcome visual impairment. In this review, we summarize the role of distinct miRNAs in specific retinal cell types, the current knowledge on their implication in inherited retinal disorders, and their potential as therapeutic agents.

1998 ◽  
Vol 18 (3) ◽  
pp. 231-237 ◽  
Author(s):  
Ursula Sonnewald ◽  
Leif Hertz ◽  
Arne Schousboe

Classically, compartmentation of glutamate metabolism in the brain is associated with the fact that neurons and glia exhibit distinct differences with regard to metabolism of this amino acid. The recent use of 13C-labeled compounds to study this metabolism in conjunction with the availability of cell type-specific tissue culture modes has led to the notion that such compartmentation may even be present in individual cell types, neurons as well as glia. To better understand and explain this, it is proposed that mitochondrial heterogeneity may exist resulting in tricarboxylic acid cycles with different properties regarding cycling rates and ratio as well as coupling to amino acid biosynthesis, primarily involving glutamate and aspartate. These hypotheses are evaluated in the light of current knowledge about mitochondrial structure and function.


2017 ◽  
Author(s):  
Yan Kai ◽  
Jaclyn Andricovich ◽  
Zhouhao Zeng ◽  
Jun Zhu ◽  
Alexandros Tzatsos ◽  
...  

AbstractThe CCCTC-binding zinc finger protein (CTCF)-mediated network of long-range chromatin interactions is important for genome organization and function. Although this network has been considered largely invariant, we found that it exhibits extensive cell-type-specific interactions that contribute to cell identity. Here we present Lollipop—a machine-learning framework—which predicts CTCF-mediated long-range interactions using genomic and epigenomic features. Using ChIA-PET data as benchmark, we demonstrated that Lollipop accurately predicts CTCF-mediated chromatin interactions both within and across cell-types, and outperforms other methods based only on CTCF motif orientation. Predictions were confirmed computationally and experimentally by Chromatin Conformation Capture (3C). Moreover, our approach reveals novel determinants of CTCF-mediated chromatin wiring, such as gene expression within the loops. Our study contributes to a better understanding about the underlying principles of CTCF-mediated chromatin interactions and their impact on gene expression.


2020 ◽  
Author(s):  
Rohan Subramanian ◽  
Debashis Sahoo

AbstractThe retina is a complex tissue containing multiple cell types that is essential for vision. Understanding the gene expression patterns of various retinal cell types has potential applications in regenerative medicine. Retinal organoids (optic vesicles) derived from pluripotent stem cells have begun to yield insights into the transcriptomics of developing retinal cell types in humans through single cell RNA-sequencing studies. Previous methods of gene reporting have relied upon techniques in vivo using microarray data, or correlational and dimension reduction methods for analyzing single cell RNA-sequencing data in silico. Here, we present a bioinformatic approach using Boolean implication to discover retinal cell type-specific genes. We apply this approach to previously published retina and retinal organoid datasets and improve upon previously published correlational methods. Our method improves the prediction accuracy and reproducibility of marker genes of retinal cell types and discovers several new high confidence cone and rod-specific genes. Furthermore, our method is general and can impact all areas of gene expression analyses in cancer and other human diseases.Significance StatementEfforts to derive retinal cell types from pluripotent stem cells to the end of curing retinal disease require robust characterization of these cell types’ gene expression patterns. The Boolean method described in this study improves prediction accuracy of earlier methods of gene reporting, and allows for the discovery and validation of retinal cell type-specific marker genes. The invariant nature of results from Boolean implication analysis can yield high-value molecular markers that can be used as biomarkers or drug targets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John A. Halsall ◽  
Simon Andrews ◽  
Felix Krueger ◽  
Charlotte E. Rutledge ◽  
Gabriella Ficz ◽  
...  

AbstractChromatin configuration influences gene expression in eukaryotes at multiple levels, from individual nucleosomes to chromatin domains several Mb long. Post-translational modifications (PTM) of core histones seem to be involved in chromatin structural transitions, but how remains unclear. To explore this, we used ChIP-seq and two cell types, HeLa and lymphoblastoid (LCL), to define how changes in chromatin packaging through the cell cycle influence the distributions of three transcription-associated histone modifications, H3K9ac, H3K4me3 and H3K27me3. We show that chromosome regions (bands) of 10–50 Mb, detectable by immunofluorescence microscopy of metaphase (M) chromosomes, are also present in G1 and G2. They comprise 1–5 Mb sub-bands that differ between HeLa and LCL but remain consistent through the cell cycle. The same sub-bands are defined by H3K9ac and H3K4me3, while H3K27me3 spreads more widely. We found little change between cell cycle phases, whether compared by 5 Kb rolling windows or when analysis was restricted to functional elements such as transcription start sites and topologically associating domains. Only a small number of genes showed cell-cycle related changes: at genes encoding proteins involved in mitosis, H3K9 became highly acetylated in G2M, possibly because of ongoing transcription. In conclusion, modified histone isoforms H3K9ac, H3K4me3 and H3K27me3 exhibit a characteristic genomic distribution at resolutions of 1 Mb and below that differs between HeLa and lymphoblastoid cells but remains remarkably consistent through the cell cycle. We suggest that this cell-type-specific chromosomal bar-code is part of a homeostatic mechanism by which cells retain their characteristic gene expression patterns, and hence their identity, through multiple mitoses.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sinisa Hrvatin ◽  
Christopher P Tzeng ◽  
M Aurel Nagy ◽  
Hume Stroud ◽  
Charalampia Koutsioumpa ◽  
...  

Enhancers are the primary DNA regulatory elements that confer cell type specificity of gene expression. Recent studies characterizing individual enhancers have revealed their potential to direct heterologous gene expression in a highly cell-type-specific manner. However, it has not yet been possible to systematically identify and test the function of enhancers for each of the many cell types in an organism. We have developed PESCA, a scalable and generalizable method that leverages ATAC- and single-cell RNA-sequencing protocols, to characterize cell-type-specific enhancers that should enable genetic access and perturbation of gene function across mammalian cell types. Focusing on the highly heterogeneous mammalian cerebral cortex, we apply PESCA to find enhancers and generate viral reagents capable of accessing and manipulating a subset of somatostatin-expressing cortical interneurons with high specificity. This study demonstrates the utility of this platform for developing new cell-type-specific viral reagents, with significant implications for both basic and translational research.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Aminah T Ali ◽  
Lena Boehme ◽  
Guillermo Carbajosa ◽  
Vlad C Seitan ◽  
Kerrin S Small ◽  
...  

Mitochondria play important roles in cellular processes and disease, yet little is known about how the transcriptional regime of the mitochondrial genome varies across individuals and tissues. By analyzing >11,000 RNA-sequencing libraries across 36 tissue/cell types, we find considerable variation in mitochondrial-encoded gene expression along the mitochondrial transcriptome, across tissues and between individuals, highlighting the importance of cell-type specific and post-transcriptional processes in shaping mitochondrial-encoded RNA levels. Using whole-genome genetic data we identify 64 nuclear loci associated with expression levels of 14 genes encoded in the mitochondrial genome, including missense variants within genes involved in mitochondrial function (TBRG4, MTPAP and LONP1), implicating genetic mechanisms that act in trans across the two genomes. We replicate ~21% of associations with independent tissue-matched datasets and find genetic variants linked to these nuclear loci that are associated with cardio-metabolic phenotypes and Vitiligo, supporting a potential role for variable mitochondrial-encoded gene expression in complex disease.


2018 ◽  
Author(s):  
Caroline Fecher ◽  
Laura Trovò ◽  
Stephan A. Müller ◽  
Nicolas Snaidero ◽  
Jennifer Wettmarshausen ◽  
...  

AbstractMitochondria vary in morphology and function in different tissues, however little is known about their molecular diversity among cell types. To investigate mitochondrial diversity in vivo, we developed an efficient protocol to isolate cell type-specific mitochondria based on a new MitoTag mouse. We profiled the mitochondrial proteome of three major neural cell types in cerebellum and identified a substantial number of differential mitochondrial markers for these cell types in mice and humans. Based on predictions from these proteomes, we demonstrate that astrocytic mitochondria metabolize long-chain fatty acids more efficiently than neurons. Moreover, we identified Rmdn3 as a major determinant of ER-mitochondria proximity in Purkinje cells. Our novel approach enables exploring mitochondrial diversity on the functional and molecular level in many in vivo contexts.


Author(s):  
Nurlan Kerimov ◽  
James D Hayhurst ◽  
Kateryna Peikova ◽  
Jonathan R Manning ◽  
Peter Walter ◽  
...  

An increasing number of gene expression quantitative trait locus (eQTL) studies have made summary statistics publicly available, which can be used to gain insight into complex human traits by downstream analyses, such as fine mapping and colocalisation. However, differences between these datasets, in their variants tested, allele codings, and in the transcriptional features quantified, are a barrier to their widespread use. Consequently, target genes for most GWAS signals have still not been identified. Here, we present the eQTL Catalogue (https://www.ebi.ac.uk/eqtl/), a resource which contains quality controlled, uniformly re-computed QTLs from 21 eQTL studies. We find that for matching cell types and tissues, the eQTL effect sizes are highly reproducible between studies, enabling the integrative analysis of these data. Although most cis-eQTLs were shared between most bulk tissues, the analysis of purified cell types identified a greater diversity of cell-type-specific eQTLs, a subset of which also manifested as novel disease colocalisations. Our summary statistics can be downloaded by FTP, accessed via a REST API, and visualised on the Ensembl genome browser. New datasets will continuously be added to the eQTL Catalogue, enabling the systematic interpretation of human GWAS associations across many cell types and tissues.


2020 ◽  
Author(s):  
Devanshi Patel ◽  
Xiaoling Zhang ◽  
John J. Farrell ◽  
Jaeyoon Chung ◽  
Thor D. Stein ◽  
...  

ABSTRACTBecause regulation of gene expression is heritable and context-dependent, we investigated AD-related gene expression patterns in cell-types in blood and brain. Cis-expression quantitative trait locus (eQTL) mapping was performed genome-wide in blood from 5,257 Framingham Heart Study (FHS) participants and in brain donated by 475 Religious Orders Study/Memory & Aging Project (ROSMAP) participants. The association of gene expression with genotypes for all cis SNPs within 1Mb of genes was evaluated using linear regression models for unrelated subjects and linear mixed models for related subjects. Cell type-specific eQTL (ct-eQTL) models included an interaction term for expression of “proxy” genes that discriminate particular cell type. Ct-eQTL analysis identified 11,649 and 2,533 additional significant gene-SNP eQTL pairs in brain and blood, respectively, that were not detected in generic eQTL analysis. Of note, 386 unique target eGenes of significant eQTLs shared between blood and brain were enriched in apoptosis and Wnt signaling pathways. Five of these shared genes are established AD loci. The potential importance and relevance to AD of significant results in myeloid cell-types is supported by the observation that a large portion of GWS ct-eQTLs map within 1Mb of established AD loci and 58% (23/40) of the most significant eGenes in these eQTLs have previously been implicated in AD. This study identified cell-type specific expression patterns for established and potentially novel AD genes, found additional evidence for the role of myeloid cells in AD risk, and discovered potential novel blood and brain AD biomarkers that highlight the importance of cell-type specific analysis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ugochukwu Kelvin Ihenacho ◽  
Kelsey A. Meacham ◽  
Megan Cleland Harwig ◽  
Michael E. Widlansky ◽  
R. Blake Hill

Mitochondrial fission protein 1 (Fis1) was identified in yeast as being essential for mitochondrial division or fission and subsequently determined to mediate human mitochondrial and peroxisomal fission. Yet, its exact functions in humans, especially in regard to mitochondrial fission, remains an enigma as genetic deletion of Fis1 elongates mitochondria in some cell types, but not others. Fis1 has also been identified as an important component of apoptotic and mitophagic pathways suggesting the protein may have multiple, essential roles. This review presents current perspectives on the emerging functions of Fis1 and their implications in human health and diseases, with an emphasis on Fis1’s role in both endocrine and neurological disorders.


Sign in / Sign up

Export Citation Format

Share Document