scholarly journals Molecular Characterization and Expression of SPP1, LAP3 and LCORL and Their Association with Growth Traits in Sheep

Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 616 ◽  
Author(s):  
Yongfu La ◽  
Xiaoxue Zhang ◽  
Fadi Li ◽  
Deyin Zhang ◽  
Chong Li ◽  
...  

The SPP1, LAP3, and LCORL are located on chromosome 6 of sheep and a domain of 36.15-38.56 Mb, which plays an essential role in tissue and embryonic growth. In this study, we cloned the complete coding sequences of SPP1 and partial coding regions of LAP3 and LCORL from Hu sheep (Gansu Province, China) and analyzed their genomic structures. The RT-qPCR showed that the three genes were expressed widely in the different tissues of Hu sheep. The SPP1 expression was significantly higher in the kidney (p < 0.01) and LAP3 expression was significantly higher in the spleen, lung, kidney, and duodenum than in the other tissues (heart, liver, rumen, muscle, fat, and ovary; p < 0.05). The LCORL was preferentially expressed in the spleen, duodenum, and lung (p < 0.05). In addition, the nucleotide substitution NM_001009224.1:c.132A>C was found in SPP1; an association analysis showed that it was associated with birth weight and yearling weight (p < 0.05), and NM_001009224.1:c.132C was the dominant allele. Two mutations XM_012179698.3:c.232C>G and XM_012179698.3:c.1154C>T were identified in LAP3. The nucleotide substitution XM_012179698.3:c.232C>G was confirmed to be associated with birth weight, 1-month weight, 3-month weight (p < 0.05), and 2-month weight (p < 0.01). The nucleotide substitution XM_012179698.3:c.1154C>T was associated with birth weight (p < 0.01), 1-month weight, and 2-month weight (p < 0.05). The LAP3 gene XM_012179698.3:c.232C>G mutation with the C allele has higher body weight than other sheep, and CC genotype individuals show higher birth weight, 1-month weight, and weaning weight than the GG genotype individuals (p < 0.05). Our results support the conclusion that the mutations on ovine SPP1 and LAP3 successfully track functional alleles that affect growth in sheep, and these genes could be used as candidate genes for improving the growth traits of sheep during breeding.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Morteza Bitaraf Sani ◽  
Javad Zare Harofte ◽  
Mohammad Hossein Banabazi ◽  
Saeid Esmaeilkhanian ◽  
Ali Shafei Naderi ◽  
...  

AbstractFor thousands of years, camels have produced meat, milk, and fiber in harsh desert conditions. For a sustainable development to provide protein resources from desert areas, it is necessary to pay attention to genetic improvement in camel breeding. By using genotyping-by-sequencing (GBS) method we produced over 14,500 genome wide markers to conduct a genome- wide association study (GWAS) for investigating the birth weight, daily gain, and body weight of 96 dromedaries in the Iranian central desert. A total of 99 SNPs were associated with birth weight, daily gain, and body weight (p-value < 0.002). Genomic breeding values (GEBVs) were estimated with the BGLR package using (i) all 14,522 SNPs and (ii) the 99 SNPs by GWAS. Twenty-eight SNPs were associated with birth weight, daily gain, and body weight (p-value < 0.001). Annotation of the genomic region (s) within ± 100 kb of the associated SNPs facilitated prediction of 36 candidate genes. The accuracy of GEBVs was more than 0.65 based on all 14,522 SNPs, but the regression coefficients for birth weight, daily gain, and body weight were 0.39, 0.20, and 0.23, respectively. Because of low sample size, the GEBVs were predicted using the associated SNPs from GWAS. The accuracy of GEBVs based on the 99 associated SNPs was 0.62, 0.82, and 0.57 for birth weight, daily gain, and body weight. This report is the first GWAS using GBS on dromedary camels and identifies markers associated with growth traits that could help to plan breeding program to genetic improvement. Further researches using larger sample size and collaboration of the camel farmers and more profound understanding will permit verification of the associated SNPs identified in this project. The preliminary results of study show that genomic selection could be the appropriate way to genetic improvement of body weight in dromedary camels, which is challenging due to a long generation interval, seasonal reproduction, and lack of records and pedigrees.


2007 ◽  
Vol 7 (2) ◽  
pp. 12 ◽  
Author(s):  
Rodrigo Alfredo Martínez ◽  
Juan Esteban Pérez ◽  
Teófilo Herazo

<p>Se establecieron componentes de varianza, así como parámetros fenotípicos y genéticos, respecto de las variables ‘peso al nacimiento’, ‘peso al destete’ (ajustado a los 270 días) y ‘peso a los 480 días’ en un hato del ganado criollo colombiano Costeño con Cuernos. Se analizaron 2.281 registros de pesos al nacer, 1.722 de pesos al destete  y 1.086 de pesos ajustados a los 480 días utilizando la metodología de máxima verosimilitud restringida (DFREML). También se ajustó un modelo animal que incluyó efectos genéticos directos, maternos y de ambiente permanente, asumiendo como efectos fijos el año de nacimiento, el sexo del ternero y el número de partos de la madre; finalmente, se estimaron los parámetros genéticos ‘heredabilidad’, ‘repetibilildad’ y se establecieron correlaciones genéticas y fenotípicas. Se reportan bajas estimaciones de heredabilidad de los efectos directos, que varían entre 0,17 ± 0,001 y 0,21 ± 0,074 para los pesos al nacer y al destete, respectivamente; así mismo, fue baja la heredabilidad de los efectos genéticos maternos con relación al peso al nacimiento, aunque estos estimados aumentaron respecto de los pesos al nacer y al destete. Las correlaciones entre efectos directos y maternos fueron negativas, pero el mayor valor se encontró para el peso al nacimiento (-0,89). La contribución del ambiente permanente como proporción de la varianza fenotípica total fue baja y disminuyó a medida que aumentó la edad del animal.</p><p> </p><p><strong>Genetic and phenotypic evaluation to characterize growth traits of the native Colombian breed Costeño con Cuernos</strong></p><p>For a herd of native Colombian breed of cattle -Costeño con Cuernos (CCC)- estimates of variance components for phenotypic and genetic parameters were obtained for birth weight, weight at weaning (adjusted to 270 days) and weight at 480 days. Using the restricted maximum likelihood (REMI) methodology, 2281 birth weight records (PN), 1722 weaning weight records and 1086 weight records adjusted to 480 days were analyze by fitting a model which included direct and maternal genetics effects as well as permanent environmental effects, assuming that fixed effects were year of birth weight, calf gender and the mother number of births. The genetic parameters for heritability, repeatability, genetic and phenotypic correlation were estimated and genotypic and phenotypic correlation was established. Heritability estimates for direct effects are low and range from 0.17 ± 0.001 and 0.21 ± 0.074 for birth and weaning weight respectively; while estimates for maternal genetics effects were also low for PN, they were higher for weaning weight and weight at 480 days. There was a negative correlation between direct and maternal effects, and the higher value was for PN (-0.89). The contribution of the variable permanent environment measured as the contribution of the phenotypic variance was low and diminished as animal age increased.</p>


2006 ◽  
Vol 22 (1-2) ◽  
pp. 35-46 ◽  
Author(s):  
M. Reißmann ◽  
P. Reinecke ◽  
U. Müller ◽  
S. Abdel-Rahman

Twelve microsatellite markers on chromosome 6 were analyzed in German Holstein population to detect and locate QTL affecting daily body weight gain (DBWG). The results indicate promising location for QTL controlling daily body weight gain trait on chromosome 6. Where, three markers BMS2508 BM3026 and TGLA37 at three different positions in a distance 15.2 cM on BTA6 were associated with significant effects for daily body weight gain trait (DBWG). Comparison between this finding and previously identified QTL support the location of a QTL for growth traits on chromosome 6, where a significant QTL for birth and yearling weight was previously identified on chromosome 6 tightly close to marker BM3026. Finding from this study could be used in subsequent fine-mapping work and applied to marker-assisted selection (MAS) of production traits.


1993 ◽  
Vol 57 (2) ◽  
pp. 326-328 ◽  
Author(s):  
G. A. María ◽  
K. G. Boldman ◽  
L. D. van Vleck

A total of 1855 records were analysed using restricted maximum likelihood (REML) techniques to estimate heritabilities separately for males and females lambs on birth weight (BW), weaning weight (WW), 90-day weight (W90) and average daily gains birth to weaning (Cl) and weaning to 90 days (C2). An animal model including fixed effects of year × season, parity, litter size and rearing type; and random effects of direct genetic effect (h2D) and residual was applied. Estimates ofh2Dfor BWwere 048 (males) and 0·50 (females); for WW 0·35 (males) and 0·22 (females); for W90 0·21 (males) and 0·31 (females); for Cl 0·20 (males) and 0·25 (females); and for C2 0·18 (males) and 0·29 (females).


2011 ◽  
Vol 50 (No. 1) ◽  
pp. 14-21 ◽  
Author(s):  
E. Krupa ◽  
M. Oravcová ◽  
P. Polák ◽  
J. Huba ◽  
Z. Krupová

Growth traits of purebred calves of six beef breeds (Aberdeen Angus &ndash; AA, Blonde d&rsquo;Aquitaine &ndash; BA, Charolais &ndash; CH,Hereford &ndash; HE, Limousine &ndash; LI and Beef Simmental &ndash; BS) born from 1998 to 2002 were analysed. Traits under study were birth weight (BW), weight at 120 days (W120), weight at 210 days &ndash; weaning weight (WW), weight at 365 days &ndash; yearling weight (YW) and average daily gains from birth to 120 days (ADG1), from birth to 210 days (ADG2), from birth to 365 days (ADG3), from 120 to 210 days (ADG4). General linear model with class effects of breed, dam&rsquo;s age at calving, sex, herd-year-season (HYS) and covariation of age at weighing was used for analyses. All effects significantly affected both weight and gain traits except for dam&rsquo;s age that was significant for BW, W120, YW and ADG3, and age at weighing that was significant for W120, WW, YW, ADG2, ADG3, ADG4. Estimated least squares means of growth traits were compared using Scheffe&rsquo;s multiple-range tests. Highest BW (40.57&nbsp;kg) and W120 (172.43 kg) were found for BA calves. BS calves had highest WW (260.30 kg), YW (424.07 kg), ADG1 (1&nbsp;154&nbsp;g), ADG2 (1 053 g), ADG3 (1 054 g) and ADG4 (1 098 g). Highest BW, YW, ADG3 and ADG4 were found for males-singles. Males-twins had highest W120, WW, ADG1 and ADG2. Calves descending from 5&ndash;7 years old dams had highest BW, W120, WW, ADG1, ADG2 and ADG4. The proportion of variability of growth traits explained by HYS effect (42.96&ndash;71.69%) was high, whereas proportions of variability explained by SEX effect (2.03&ndash;5.77%), age of dam (1.02&ndash;2.24%) and breed (1.05&ndash;2.21%) were low. Residuals accounted for 23.71 up to 53.79% of total variance. &nbsp;


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 688 ◽  
Author(s):  
Ziting Feng ◽  
Xinyu Li ◽  
Jie Cheng ◽  
Rui Jiang ◽  
Ruolan Huang ◽  
...  

Copy number variation (CNV) is a type of genomic variation with an important effect on animal phenotype. We found that the PIGY gene contains a 3600 bp copy number variation (CNV) region located in chromosome 6 of sheep (Oar_v4.0 36,121,601–36,125,200 bp). This region overlaps with multiple quantitative trait loci related to phenotypes like muscle density and carcass weight. Therefore, in this study, the copy number variation of the PIGY gene was screened in three Chinese sheep breeds, namely, Chaka sheep (CKS, May of 2018, Wulan County, Qinghai Province, China), Hu sheep (HS, May of 2015, Mengjin County, Henan Province, China), and small-tailed Han sheep (STHS, May of 2016, Yongjing, Gansu Province, China). Association analyses were performed on the presence of CNV and sheep body size traits. We used real-time quantitative PCR (qPCR) to detect the CNV for association analysis. According to the results, the loss-type CNV was more common than other types in the three breeds (global average: loss = 61.5%, normal = 17.5%, and gain = 21.0%). The association analysis also showed significant effects of the PIGY gene CNV on body weight, chest circumference, and circumference of the cannon bone of sheep. Sheep with gain-type CNV had better growth traits than those with other types. The results indicate a clear relationship between the PIGY gene CNV and growth traits of sheep, suggesting the use of CNV as a new molecular breeding marker.


1980 ◽  
Vol 30 (2) ◽  
pp. 271-276 ◽  
Author(s):  
A. P. Mavrogenis ◽  
A. Louca ◽  
O. W. Robison

ABSTRACTData on 792 Chios lambs born during the 1972/73 and 1973/74 lambing seasons were used to estimate genetic and phenotypic parameters for birth weight, weaning weight, age at weaning, pre-weaning daily gain, body weight at 5, 10, 15 and 20 weeks of age, and postweaning daily gain. Body weight at 15 weeks of age had the highest heritability estimate (0·73 ± 0·17) and that of post-weaning daily gain was also high (0·56 ± 0·15). Selection for either weight at 15 weeks or post-weaning daily gain would be expected to yield a greater response than selection for pre-weaning daily gain or weaning weight. Genetic correlations among weights and/or gains were positive (approximately 0·20). Phenotypic correlations among weights and gains were generally higher than genetic correlations. However, the correlation between pre— and post-weaning daily gain was small (0·08). Likewise, post-weaning daily gain had low correlations with all weights before 10 weeks. Age at weaning had moderate negative associations with all weights but a very low positive correlation with post-weaning daily gain.


2005 ◽  
Vol 81 (1) ◽  
pp. 11-21 ◽  
Author(s):  
N. R. Lambe ◽  
S. Brotherstone ◽  
M. J. Young ◽  
J. Conington ◽  
G. Simm

AbstractScottish Blackface ewes (no. = 308) were scanned four times per year using X-ray computed tomography (CT scanning) (pre-mating, pre-lambing, mid lactation and weaning), from 18 months to 5 years of age, giving a maximum of 16 scanning events per ewe. Total weights of carcass fat, internal fat and carcass muscle were estimated from the CT images at each scanning event. Lambs produced by these ewes were weighed at birth, mid lactation and weaning to calculate litter growth traits: litter birth weight; litter weight gain from birth until mid lactation; and litter weight gain from birth until weaning. Genetic (rg) and phenotypic (rp) correlations were estimated between ewe CT tissue traits and litter growth traits. Correlations between ewe CT tissue traits and litter size (LS) were also estimated. Ewe CT tissue traits were either unadjusted or adjusted for total soft tissue weight (sum of weights of carcass fat, internal fat and carcass muscle) to investigate relationships with either absolute tissue weights of carcass fat (CFWT), internal fat (IFWT), and carcass muscle (CMWT), or relative proportions of carcass fat (CFP), internal fat (IFP), and carcass muscle (CMP). Litter growth traits were either unadjusted or adjusted for litter size, to investigate relationships with total lamb burden (total litter birth weight (TBW), total litter weight gain from birth until mid lactation (TWGM), total litter weight gain from birth until weaning (TWGW)) or average lamb performance (average lamb birth weight (ABW), average lamb weight gain from birth until mid lactation (AWGM), average lamb weight gain from birth until weaning (AWGW)).Moderate to large positive genetic correlations were estimated between absolute weights of all three ewe tissues (CFWT, IFWT, CMWT), or muscle proportion (CMP), and litter size (LS). Significant positive genetic correlations were also estimated between weight (CMWT) or proportion (CMP) of muscle carried by the ewe pre-mating and total birth weight (TBW) and weight gains (TWGM, TWGW) of her litter, largely due to the associated increase in litter size. Muscle proportion (CMP) was not significantly correlated to average lamb weights or weight gains (ABW, AWGM, AWGW). Pre-lambing carcass fat weight (CFWT) and proportion (CFP) in the ewe showed positive genetic correlations with average lamb weights and weight gains (ABW, AWGM, AWGW), whereas, after lambing, CFP was negatively correlated with these lamb traits. Internal fat weight (IFWT) pre-mating showed positive genetic correlations with all litter growth traits (TBW, TWGM, TWGW, ABW, AWGM, AWGW). Average lamb growth traits were negatively correlated with pre-lambing internal fat proportion (IFP), but positively correlated to IFP at mid lactation and weaning.Correlations were also estimated between each pair of CT traits. Total internal fat weight and total carcass fat weight were very highly correlated (rp= 0·75,rg= 0·96). Correlations with total carcass muscle weight were smaller and positive for both carcass fat weight (rp= 0·48,rg= 0·12) and internal fat weight (rp= 0·42,rg= 0·20).The results suggest that selection for increased carcass muscle weight or proportion in a Scottish Blackface hill flock would have a positive effect on total weights of litters reared, but that selection against carcass fat weight or proportion in a breeding programme for Blackface sheep may have an impact on the maternal ability of the ewe. However, maintaining fat in internal depots may reduce the depletion of carcass fat during pregnancy, allowing this depot to provide energy for lactation, and may have a positive impact on lamb growth.


1991 ◽  
Vol 71 (2) ◽  
pp. 279-285 ◽  
Author(s):  
M. F. Liu ◽  
M. Makarechian ◽  
R. T. Berg

Genetic and phenotypic parameters of growth traits from birth to 1 year of age were compared in a multibreed Beef Synthetic (SY) and a purebred Hereford (HE) population managed together under the same environmental conditions and selected for growth rate from 1961 to 1979. Growth traits studied were birth weight, preweaning and postweaning gains. Records of 2077 calves of 70 HE and 100 SY paternal half-sib families were used for analysis. Except for birth weight, phenotypic variances of growth traits were similar for the synthetic (SY) and purebred (HE) populations, but genetic variances were larger in SY than in HE for all growth traits except postweaning gain in males. The coefficients of variation were comparable for all the traits studied in the two populations, indicating that phenotypic variations in the multibreed population and the purebred population were similar. Key words: Variance components, heritability, beef cattle


2002 ◽  
Vol 82 (4) ◽  
pp. 591-593 ◽  
Author(s):  
J. J. Tosh ◽  
J. W. Wilton

A terminal-sire index for selecting rams was developed. It combines genetic evaluations for growth traits and carcass characteristics measured ultrasonically on live animals into a single criterion. Weightings for component traits are averages from the indexes of four slightly different breeding goals, determined using economic values and parameters from the literature. The weightings for breeding values of component traits are -1.45 for birth weight, +1.86 for weight at 50 d of age, +2.27 for gain from 50 to 100 d, -0.51 for ultrasonic fat depth, and +1.36 for ultrasonic loin muscle depth, in phenotypic standard deviation units. Selection that is based on the index will increase growth while simultaneously decreasing fat and increasing muscle. Key words: Breeding strategies, carcass characteristics, growth, selection, sheep


Sign in / Sign up

Export Citation Format

Share Document