scholarly journals Novel Aspects on The Interaction Between Grapevine and Plasmopara viticola: Dual-RNA-Seq Analysis Highlights Gene Expression Dynamics in The Pathogen and The Plant During The Battle For Infection

Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 261 ◽  
Author(s):  
Silvia Laura Toffolatti ◽  
Gabriella De Lorenzis ◽  
Matteo Brilli ◽  
Mirko Moser ◽  
Vahid Shariati ◽  
...  

Mgaloblishvili, a Vitis vinifera cultivar, exhibits unique resistance traits against Plasmopara viticola, the downy mildew agent. This offers the unique opportunity of exploring the molecular responses in compatible and incompatible plant-pathogen interaction. In this study, whole transcriptomes of Mgaloblishvili, Pinot noir (a V. vinifera susceptible cultivar), and Bianca (a resistant hybrid) leaves, inoculated and non-inoculated with the pathogen, were used to identify P. viticola effector-encoding genes and plant susceptibility/resistance genes. Multiple effector-encoding genes were identified in P. viticola transcriptome, with remarkable expression differences in relation to the inoculated grapevine cultivar. Intriguingly, five apoplastic effectors specifically associated with resistance in V. vinifera. Gene coexpression network analysis identified specific modules and metabolic changes occurring during infection in the three grapevine cultivars. Analysis of these data allowed, for the first time, the detection in V. vinifera of a putative P. viticola susceptibility gene, encoding a LOB domain-containing protein. Finally, the de novo assembly of Mgaloblishvili, Pinot noir, and Bianca transcriptomes and their comparison highlighted novel candidate genes that might be at the basis of the resistant phenotype. These results open the way to functional analysis studies and to new perspectives in molecular breeding of grapevine for resistance to P. viticola.

2021 ◽  
Vol 12 ◽  
Author(s):  
Demetrio Marcianò ◽  
Valentina Ricciardi ◽  
Elena Marone Fassolo ◽  
Alessandro Passera ◽  
Piero Attilio Bianco ◽  
...  

Downy mildew, caused by the oomycete Plasmopara viticola, is one of the diseases causing the most severe economic losses to grapevine (Vitis vinifera) production. To date, the application of fungicides is the most efficient method to control the pathogen and the implementation of novel and sustainable disease control methods is a major challenge. RNA interference (RNAi) represents a novel biotechnological tool with a great potential for controlling fungal pathogens. Recently, a candidate susceptibility gene (VviLBDIf7) to downy mildew has been identified in V. vinifera. In this work, the efficacy of RNAi triggered by exogenous double-stranded RNA (dsRNA) in controlling P. viticola infections has been assessed in a highly susceptible grapevine cultivar (Pinot noir) by knocking down VviLBDIf7 gene. The effects of dsRNA treatment on this target gene were assessed by evaluating gene expression, disease severity, and development of vegetative and reproductive structures of P. viticola in the leaf tissues. Furthermore, the effects of dsRNA treatment on off-target (EF1α, GAPDH, PEPC, and PEPCK) and jasmonic acid metabolism (COI1) genes have been evaluated. Exogenous application of dsRNA led to significant reductions both in VviLBDIf7 gene expression, 5 days after the treatment, and in the disease severity when artificial inoculation was carried out 7 days after dsRNA treatments. The pathogen showed clear alterations to both vegetative (hyphae and haustoria) and reproductive structures (sporangiophores) that resulted in stunted growth and reduced sporulation. Treatment with dsRNA showed signatures of systemic activity and no deleterious off-target effects. These results demonstrated the potential of RNAi for silencing susceptibility factors in grapevine as a sustainable strategy for pathogen control, underlying the possibility to adopt this promising biotechnological tool in disease management strategies.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Nathan L Absalom ◽  
Vivian W Y Liao ◽  
Kavitha Kothur ◽  
Dinesh C Indurthi ◽  
Bruce Bennetts ◽  
...  

Abstract Variants in the GABRB3 gene encoding the β3-subunit of the γ-aminobutyric acid type A ( receptor are associated with various developmental and epileptic encephalopathies. Typically, these variants cause a loss-of-function molecular phenotype whereby γ-aminobutyric acid has reduced inhibitory effectiveness leading to seizures. Drugs that potentiate inhibitory GABAergic activity, such as nitrazepam, phenobarbital or vigabatrin, are expected to compensate for this and thereby reduce seizure frequency. However, vigabatrin, a drug that inhibits γ-aminobutyric acid transaminase to increase tonic γ-aminobutyric acid currents, has mixed success in treating seizures in patients with GABRB3 variants: some patients experience seizure cessation, but there is hypersensitivity in some patients associated with hypotonia, sedation and respiratory suppression. A GABRB3 variant that responds well to vigabatrin involves a truncation variant (p.Arg194*) resulting in a clear loss-of-function. We hypothesized that patients with a hypersensitive response to vigabatrin may exhibit a different γ-aminobutyric acid A receptor phenotype. To test this hypothesis, we evaluated the phenotype of de novo variants in GABRB3 (p.Glu77Lys and p.Thr287Ile) associated with patients who are clinically hypersensitive to vigabatrin. We introduced the GABRB3 p.Glu77Lys and p.Thr287Ile variants into a concatenated synaptic and extrasynaptic γ-aminobutyric acid A receptor construct, to resemble the γ-aminobutyric acid A receptor expression by a patient heterozygous for the GABRB3 variant. The mRNA of these constructs was injected into Xenopus oocytes and activation properties of each receptor measured by two-electrode voltage clamp electrophysiology. Results showed an atypical gain-of-function molecular phenotype in the GABRB3 p.Glu77Lys and p.Thr287Ile variants characterized by increased potency of γ-aminobutyric acid A without change to the estimated maximum open channel probability, deactivation kinetics or absolute currents. Modelling of the activation properties of the receptors indicated that either variant caused increased chloride flux in response to low concentrations of γ-aminobutyric acid that mediate tonic currents. We therefore propose that the hypersensitivity reaction to vigabatrin is a result of GABRB3 variants that exacerbate GABAergic tonic currents and caution is required when prescribing vigabatrin. In contrast, drug strategies increasing tonic currents in loss-of-function variants are likely to be a safe and effective therapy. This study demonstrates that functional genomics can explain beneficial and adverse anti-epileptic drug effects, and propose that vigabatrin should be considered in patients with clear loss-of-function GABRB3 variants.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 789
Author(s):  
Athanasios Dalakouras ◽  
Ioannis Ganopoulos

Exogenous application of RNA molecules is a potent method to trigger RNA interference (RNAi) in plants in a transgene-free manner. So far, all exogenous RNAi (exo-RNAi) applications have aimed to trigger mRNA degradation of a given target. However, the issue of concomitant epigenetic changes was never addressed. Here, we report for the first time that high-pressure spraying of dsRNAs can trigger de novo methylation of promoter sequences in plants.


2021 ◽  
Vol 22 (3) ◽  
pp. 1175
Author(s):  
Ryuta Inukai ◽  
Kanako Mori ◽  
Keiko Kuwata ◽  
Chihiro Suzuki ◽  
Masatoshi Maki ◽  
...  

Apoptosis-linked gene 2 (ALG-2, also known as PDCD6) is a member of the penta-EF-hand (PEF) family of Ca2+-binding proteins. The murine gene encoding ALG-2 was originally reported to be an essential gene for apoptosis. However, the role of ALG-2 in cell death pathways has remained elusive. In the present study, we found that cell death-inducing p53 target protein 1 (CDIP1), a pro-apoptotic protein, interacts with ALG-2 in a Ca2+-dependent manner. Co-immunoprecipitation analysis of GFP-fused CDIP1 (GFP-CDIP1) revealed that GFP-CDIP1 associates with tumor susceptibility gene 101 (TSG101), a known target of ALG-2 and a subunit of endosomal sorting complex required for transport-I (ESCRT-I). ESCRT-I is a heterotetrameric complex composed of TSG101, VPS28, VPS37 and MVB12/UBAP1. Of diverse ESCRT-I species originating from four VPS37 isoforms (A, B, C, and D), CDIP1 preferentially associates with ESCRT-I containing VPS37B or VPS37C in part through the adaptor function of ALG-2. Overexpression of GFP-CDIP1 in HEK293 cells caused caspase-3/7-mediated cell death. In addition, the cell death was enhanced by co-expression of ALG-2 and ESCRT-I, indicating that ALG-2 likely promotes CDIP1-induced cell death by promoting the association between CDIP1 and ESCRT-I. We also found that CDIP1 binds to vesicle-associated membrane protein-associated protein (VAP)A and VAPB through the two phenylalanines in an acidic tract (FFAT)-like motif in the C-terminal region of CDIP1, mutations of which resulted in reduction of CDIP1-induced cell death. Therefore, our findings suggest that different expression levels of ALG-2, ESCRT-I subunits, VAPA and VAPB may have an impact on sensitivity of anticancer drugs associated with CDIP1 expression.


2021 ◽  
Vol 9 (5) ◽  
pp. 951
Author(s):  
Hazrat Bilal ◽  
Gaojian Zhang ◽  
Tayyab Rehman ◽  
Jianxion Han ◽  
Sabir Khan ◽  
...  

The New Delhi Metallo-β-lactamase (NDM) is among the most threatening forms of carbapenemases produced by K. pneumoniae, well-known to cause severe worldwide infections. The molecular epidemiology of blaNDM-1-harboring K. pneumoniae is not well elucidated in Pakistan. Herein, we aim to determine the antibiotics-resistance profile, genes type, molecular type, and plasmid analysis of 125 clinically isolated K. pneumoniae strains from urine samples during July 2018 to January 2019 in Pakistan. A total of 34 (27.2%) K. pneumoniae isolates were carbapenemases producers, and 23 (18.4%) harbored the blaNDM-1 gene. The other carbapenemases encoding genes, i.e., blaIMP-1 (7.2%), blaVIM-1 (3.2%), and blaOXA-48 (2.4%) were also detected. The Multi Locus Sequence Typing (MLST) results revealed that all blaNDM-1-harboring isolates were ST11. The other sequence types detected were ST1, ST37, and ST105. The cluster analysis of Xbal Pulsed Field Gel Electrophoresis (PFGE) revealed variation amongst the clusters of the identical sequence type isolates. The blaNDM-1 gene in all of the isolates was located on a 45-kb IncX3 plasmid, successfully transconjugated. For the first time, blaNDM-1-bearing IncX3 plasmids were identified from Pakistan, and this might be a new primary vehicle for disseminating blaNDM-1 in Enterobacteriaceae as it has a high rate of transferability.


2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Claudia Brogna ◽  
Valentina Milano ◽  
Barbara Brogna ◽  
Lara Cristiano ◽  
Giuseppe Rovere ◽  
...  

The partial trisomy 13q encompasses an extensive variability of phenotypic and radiological findings including leukoencephalopathy and brain malformations such as holoprosencephaly, callosal dysgenesis, hippocampal hypoplasia, olfactory hypoplasia, and vermian hypoplasia. We report for the first time a case of a 23-year-old patient affected by de novo partial 13q22.1q34 trisomy (41.7 Mb, 72,365,975-114,077,122x3) presenting with hemiparesis related to both ischemic and haemorrhagic cerebral lesions compatible with cerebral vasculitis due to a possible combination of genetic and immunological interaction.


2004 ◽  
Vol 48 (4) ◽  
pp. 1374-1378 ◽  
Author(s):  
Alejandro Beceiro ◽  
Lourdes Dominguez ◽  
Anna Ribera ◽  
Jordi Vila ◽  
Francisca Molina ◽  
...  

ABSTRACT A presumptive chromosomal cephalosporinase (pI, 9.0) from a clinical strain of Acinetobacter genomic species 3 (AG3) is reported. The nucleotide sequence of this β-lactamase shows for the first time the gene encoding an AmpC enzyme in AG3. In addition, the biochemical properties of the novel AG3 AmpC β-lactamase are reported


2007 ◽  
Vol 58 ◽  
pp. S65
Author(s):  
Takao Hikita ◽  
Masashi Ikeda ◽  
Shinichiro Taya ◽  
Takeshi Miyakawa ◽  
Kozo Kaibuchi ◽  
...  

2018 ◽  
Vol 18 (5-6) ◽  
pp. 233-238
Author(s):  
Frederic Sampedro ◽  
Juan Marín-Lahoz ◽  
Saul Martínez-Horta ◽  
Javier Pagonabarraga ◽  
Jaime Kulisevsky

The role of cerebrospinal fluid (CSF) biomarkers such as CSF α-synuclein and CSF tau in predicting cognitive decline in Parkinson’s disease (PD) continues to be inconsistent. Here, using a cohort of de novo PD patients with preserved cognition from the Parkinson’s Progression Markers Initiative (PPMI), we show that the SNCA rs356181 single nucleotide polymorphism (SNP) modulates the effect of these CSF biomarkers on cortical thinning. Depending on this SNP’s genotype, cortical atrophy was associated with either higher or lower CSF biomarker levels. Additionally, this SNP modified age-related atrophy. Importantly, the integrity of the brain regions where this phenomenon was observed correlated with cognitive measures. These results suggest that this genetic variation of the gene encoding the α-synuclein protein, known to be involved in the development of PD, also interferes in its subsequent neurodegeneration. Overall, our findings could shed light on the so far incongruent association of common CSF biomarkers with cognitive decline in PD.


2002 ◽  
Vol 184 (22) ◽  
pp. 6123-6129 ◽  
Author(s):  
Min Cao ◽  
John D. Helmann

ABSTRACT Bacitracin resistance is normally conferred by either of two major mechanisms, the BcrABC transporter, which pumps out bacitracin, or BacA, an undecaprenol kinase that provides C55-isoprenyl phosphate by de novo synthesis. We demonstrate that the Bacillus subtilis bcrC (ywoA) gene, encoding a putative bacitracin transport permease, is an important bacitracin resistance determinant. A bcrC mutant strain had an eightfold-higher sensitivity to bacitracin. Expression of bcrC initiated from a single promoter site that could be recognized by either of two extracytoplasmic function (ECF) σ factors, σX or σM. Bacitracin induced expression of bcrC, and this induction was dependent on σM but not on σX. Under inducing conditions, expression was primarily dependent on σM. As a consequence, a sigM mutant was fourfold more sensitive to bacitracin, while the sigX mutant was only slightly sensitive. A sigX sigM double mutant was similar to a bcrC mutant in sensitivity. These results support the suggestion that one function of B. subtilis ECF σ factors is to coordinate antibiotic stress responses.


Sign in / Sign up

Export Citation Format

Share Document