scholarly journals Transcriptional Regulation of HMOX1 Gene in Hezuo Tibetan Pigs: Roles of WT1, Sp1, and C/EBPα

Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 352
Author(s):  
Wei Wang ◽  
Qiaoli Yang ◽  
Kaihui Xie ◽  
Pengfei Wang ◽  
Ruirui Luo ◽  
...  

Heme oxygenase 1 (HMOX1) is a stress-inducing enzyme with multiple cardiovascular protective functions, especially in hypoxia stress. However, transcriptional regulation of swine HMOX1 gene remains unclear. In the present study, we first detected tissue expression profiles of HMOX1 gene in adult Hezuo Tibetan pig and analyzed the gene structure. We found that the expression level of HMOX1 gene was highest in the spleen of the Hezuo Tibetan pig, followed by liver, lung, and kidney. A series of 5’ deletion promoter plasmids in pGL3-basic vector were used to identify the core promoter region and confirmed that the minimum core promoter region of swine HMOX1 gene was located at −387 bp to −158 bp region. Then we used bioinformatics analysis to predict transcription factors in this region. Combined with site-directed mutagenesis and RNA interference assays, it was demonstrated that the three transcription factors WT1, Sp1 and C/EBPα were important transcription regulators of HMOX1 gene. In summary, our study may lay the groundwork for further functional study of HMOX1 gene.

1992 ◽  
Vol 12 (3) ◽  
pp. 1352-1356 ◽  
Author(s):  
D C Leitman ◽  
E R Mackow ◽  
T Williams ◽  
J D Baxter ◽  
B L West

Activators of protein kinase C, such as 12-O-tetradecanoylphorbol 13-acetate (TPA), are known to regulate the expression of many genes, including the tumor necrosis factor alpha (TNF) gene, by affecting the level or activity of upstream transcription factors. To investigate the mechanism whereby TPA activates the TNF promoter, a series of 5'-deletion mutants of the human TNF promoter linked to chloramphenicol acetyltransferase was transfected into U937 human promonocytic cells. TPA produced a 7- to 11-fold activation of all TNF promoters tested, even those promoters truncated to contain only the core promoter with no upstream enhancer elements. The proximal TNF promoter containing only 28 nucleotides upstream and 10 nucleotides downstream of the RNA start site confers TPA activation to a variety of unrelated upstream enhancer elements and transcription factors, including Sp1, CTF/NF1, cyclic AMP-response element, GAL-E1a, and GAL-VP16. The level of activation by TPA depends on the TATA box structure, since the TPA response is greater in promoters containing the sequence TATAAA than in those containing TATTAA or TATTTA. These findings suggest that the core promoter region is a target for gene regulation by second-messenger pathways.


2004 ◽  
Vol 286 (6) ◽  
pp. G922-G931 ◽  
Author(s):  
Lingling Jiang ◽  
Jiafang Wang ◽  
R. Sergio Solorzano-Vargas ◽  
Hugh V. Tsai ◽  
Edgar M Gutierrez ◽  
...  

The regulatory elements that control the transcriptional regulation of the intestinal Fc receptor ( FcRn) have not been elucidated. The objective of this study was to characterize the core promoter region of the rat FcRn gene. Chimeric clones that contained various regions of the promoter located upstream of the luciferase reporter were transiently transfected into either IEC-6 or Caco-2 cell lines and nuclear extracts were used to perform DNase I footprint and DNA binding assays (EMSA). Transfection of chimeric upstream nested deletions-luciferase reporter clones into either of these cell lines supported robust reporter activity and identified the location of the minimal promoter at −157/+135. DNase I footprint analysis revealed two complexes located within the gene's core promoter region, and site-directed mutagenesis identified two regions that were critical to maintain basal expression. EMSA identified the presence of five Sp elements within the immediate promoter region that are capable of binding members of the Sp family of proteins. Among the five Sp elements, one element appears to not bind Sp1, Sp2, or Sp3 while influencing the interaction of Sp proteins with an adjacent Sp site. Overexpression of either Sp1 or Sp3 augments activity of the minimal promoter in Sp-deficient Drosophila SL2 cells. In summary, we report on the characterization of the rat FcRn minimal promoter, including the characterization of five Sp elements within this region that interact with members of the Sp family of transcriptional factors and drive promoter activity in intestinal cell lines.


Molecules ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 162 ◽  
Author(s):  
Zhiqiang Fang ◽  
Yulong Sun ◽  
Xin Zhang ◽  
Guodong Wang ◽  
Yuting Li ◽  
...  

Heat-shock protein 70 (HSP70) is a molecular chaperone that plays critical roles in cell protein folding and metabolism, which helps to protect cells from unfavorable environmental stress. Haliotis diversicolor is one of the most important economic breeding species in the coastal provinces of south China. To date, the expression and transcriptional regulation of HSP70 in Haliotis diversicolor (HdHSP70) has not been well characterized. In this study, the expression levels of HdHSP70 gene in different tissues and different stress conditions were detected. The results showed that the HdHSP70 gene was ubiquitously expressed in sampled tissues and was the highest in hepatopancreas, followed by hemocytes. In hepatopancreas and hemocytes, the HdHSP70 gene was significantly up-regulated by Vibrio parahaemolyticus infection, thermal stress, and combined stress (Vibrio parahaemolyticus infection and thermal stress combination), indicating that HdHSP70 is involved in the stress response and the regulation of innate immunity. Furthermore, a 2383 bp of 5′-flanking region sequence of the HdHSP70 gene was cloned, and it contains a presumed core promoter region, a CpG island, a (TG)39 simple sequence repeat (SSR), and many potential transcription factor binding sites. The activity of HdHSP70 promoter was evaluated by driving the expression of luciferase gene in HEK293FT cells. A series of experimental results indicated that the core promoter region is located between −189 bp and +46 bp, and high-temperature stress can increase the activity of HdHSP70 promoter. Sequence-consecutive deletions of the luciferase reporter gene in HEK293FT cells revealed two possible promoter activity regions. To further identify the binding site of the key transcription factor in the two regions, two expression vectors with site-directed mutation were constructed. The results showed that the transcriptional activity of NF-1 site-directed mutation was significantly increased (p < 0.05), whereas the transcriptional activity of NF-κB site-directed mutation was significantly reduced. These results suggest that NF-1 and NF-κB may be two important transcription factors that regulate the expression of HdHSP70 gene.


1992 ◽  
Vol 12 (3) ◽  
pp. 1352-1356
Author(s):  
D C Leitman ◽  
E R Mackow ◽  
T Williams ◽  
J D Baxter ◽  
B L West

Activators of protein kinase C, such as 12-O-tetradecanoylphorbol 13-acetate (TPA), are known to regulate the expression of many genes, including the tumor necrosis factor alpha (TNF) gene, by affecting the level or activity of upstream transcription factors. To investigate the mechanism whereby TPA activates the TNF promoter, a series of 5'-deletion mutants of the human TNF promoter linked to chloramphenicol acetyltransferase was transfected into U937 human promonocytic cells. TPA produced a 7- to 11-fold activation of all TNF promoters tested, even those promoters truncated to contain only the core promoter with no upstream enhancer elements. The proximal TNF promoter containing only 28 nucleotides upstream and 10 nucleotides downstream of the RNA start site confers TPA activation to a variety of unrelated upstream enhancer elements and transcription factors, including Sp1, CTF/NF1, cyclic AMP-response element, GAL-E1a, and GAL-VP16. The level of activation by TPA depends on the TATA box structure, since the TPA response is greater in promoters containing the sequence TATAAA than in those containing TATTAA or TATTTA. These findings suggest that the core promoter region is a target for gene regulation by second-messenger pathways.


2021 ◽  
Author(s):  
Suzhen Lin ◽  
Ruinan Shen ◽  
Hong Pan ◽  
Lu He ◽  
Fang Fang ◽  
...  

Abstract BackgroundNeuroinflammation is known to be involved in the pathogenesis of Parkinson's disease (PD). Abnormal activation of microglia plays a key role in this pathological process. CD200R1 is a membrane glycoprotein primarily expressed in microglia in central nervous system responsible for transducing signaling maintaining microglia in stationary status. Our previous studies have demonstrated the dysregulation of CD200R1 and its involvement in PD pathogenesis. The binding of transcription factors with promoter regions is the basic and essential step for the regulation of gene expression. However, little is known about the human CD200R1 promoter region and the mechanism of the dysregulated expression of CD200R1 in PD. MethodsLuciferase reporter system was initially employed to identify the core region of CD200R1 promoter and figure out its potential transcription factors. Subsequently, we investigated the interaction adopting electrophoretic mobility shift assay and chromatin immunoprecipitation assay. The regulatory function of the detected transcription factors were further proved through its down-regulation and overexpression. We then collected the peripheral blood mononuclear cells from both PD patients and their healthy counterparts with matched age and sex to evaluate whether consistent results existed under clinical setting. Ultimately, the mouse model was established through knocking-out the identified transcription factor and its role in neuroinflammation and pathogenesis of PD was explored. ResultsWe defined that the core promoter region of CD200R was located within -482 to -146 bp upstream of the translation initiation site (TIS). In addition, we demonstrated that NFKB1 directly bound to the CD200R1 core promoter region and regulated its transcriptional activity. Besides, the expression of NFKB1 and CD200R1 was significantly correlated in human peripheral blood mononuclear cells and knocking down NFKB1 significantly reduced CD200R1 expression. Moreover, both NFKB1 and CD200R1 were significantly downregulated in samples from PD patients. Furthermore, NFKB1-/- mice exhibited exacerbated microglia activation and dopaminergic neuron loss after MPTP treatment. ConclusionOur study provided novel understanding of the transcriptional regulation of CD200R1 and its role in microglia homeostasis in the pathogenesis of PD.


2002 ◽  
Vol 283 (2) ◽  
pp. G415-G425 ◽  
Author(s):  
R. Sergio Solorzano-Vargas ◽  
Jiafang Wang ◽  
Lingling Jiang ◽  
Hugh V. Tsai ◽  
Luis O. Ontiveros ◽  
...  

The polymeric Ig receptor ( pIgR) is a critical component of the mucosal immune system and is expressed in largest amounts in the small intestine. In this study, we describe the initial characterization of the core promoter region of this gene. Expression of chimeric promoter-reporter constructs was supported in Caco-2 and HT-29 cells, and DNase I footprint analysis revealed a large protein complex within the core promoter region. Site-directed mutagenesis experiments determined that elements within this region serve to either augment or repress basal activity of the human pIgR promoter. Band shift assays of overlapping oligonucleotides within the core promoter identified eight distinct complexes; the abundance of most complexes was enhanced in post-confluent cells. In summary, we report the characterization of the human pIgR promoter and the essential role that eight different nuclear complexes have in controlling basal expression of this gene in Caco-2 cells.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 981 ◽  
Author(s):  
Chengcheng Liang ◽  
Anning Li ◽  
Sayed Haidar Abbas Raza ◽  
Rajwali Khan ◽  
Xiaoyu Wang ◽  
...  

The gene family with sequence similarity 13 member A (FAM13A) has recently been identified as a marker gene in insulin sensitivity and lipolysis. In this study, we first analyzed the expression patterns of this gene in different tissues of adult cattle and then constructed a phylogenetic tree based on the FAM13A amino acid sequence. This showed that subcutaneous adipose tissue had the highest expression in all tissues except lung tissue. Then we summarized the gene structure. The promoter region sequence of the gene was successfully amplified, and the −241/+54 region has been identified as the core promoter region. The core promoter region was determined by the unidirectional deletion of the 5’ flanking promoter region of the FAM13A gene. Based on the bioinformatics analysis, we examined the dual luciferase activity of the vector constructed by the mutation site, and the transcription factors ACSL1 and ASCL2 were found as transcriptional regulators of FAM13A. Moreover, electrophoretic mobility shift assay (EMSA) further validated the regulatory role of ACSL1 and ASCL2 in the regulation of FAM13A. ACSL1 and ASCL2 were finally identified as activating transcription factors. Our results provide a basis for the function of the FAM13A gene in bovine adipocytes in order to improve the deposition of fat deposition in beef cattle muscle.


Sign in / Sign up

Export Citation Format

Share Document