scholarly journals Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses

Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 881
Author(s):  
Yongsheng Li ◽  
Xingrong Wang ◽  
Yue Li ◽  
Yanjun Zhang ◽  
Zuowang Gou ◽  
...  

Temperature stresses (TS), including cold and heat stress, adversely affect the growth, development, and yield of maize (Zea mays L.). To clarify the molecular mechanisms of the tolerance of maize seedling leaves to TS, we applied transcriptomic sequencing of an inbred maize line, B73, with seedlings exposed to various temperature conditions, including normal temperature (NT, 25 °C), cold (4, 10, and 16 °C), and heat (37, 42, and 48 °C) stresses. Differentially expressed genes (DEGs) were detected in different comparison between the NT sample and each temperature-stressed sample, with 5358, 5485, 5312, 1095, 2006, and 4760 DEGs responding to TS of 4, 10, 16, 37, 42, and 48 °C, respectively. For cold and heat stresses, 189 DEGs enriched in the hydrogen peroxidase metabolic process, cellular modified amino acid metabolic process, and sulfur compound metabolic process were common. The DEGs encoding calcium signaling and reactive oxygen species scavenging enzymes demonstrated similar expression characterizations, whereas the DEGs encoding transcription factors, such as ERF, ARF, and HSF, hormone signaling, and heat shock proteins, displayed divergent expression models, implying both common and divergent responses to cold and heat stresses in maize seedling leaves. Co-expression network analysis showed that functional DEGs associated with the core regulators in response to cold and heat stresses were significantly correlated with TS, indicating their vital roles in cold and heat adaptation, respectively. Our investigation focused on the response to gradient TS, and the results presented a relatively comprehensive category of genes involved in differential TS responses. These will contribute a better understanding of the molecular mechanisms of maize seedling leaf responses to TS and provide valuable genetic resources for breeding TS tolerant varieties of maize.

2003 ◽  
Vol 66 (11) ◽  
pp. 2045-2050 ◽  
Author(s):  
YI ZHANG ◽  
MANSEL W. GRIFFITHS

Heat shock proteins play an important role in protecting bacterial cells against several stresses, including starvation. In this study, the promoters for two genes encoding heat shock proteins involved in many stress responses, UspA and GrpE, were fused with the green fluorescent protein (gfp) gene. Thus, the expression of the two genes could be quantified by measuring the fluorescence emitted by the cells under different environmental conditions. The heat resistance levels of starved and nonstarved cells during storage at 5, 10, and 37°C were compared with the levels of expression of the uspA and grpE genes. D52-values (times required for decimal reductions in count at 52°C) increased by 11.5, 14.6, and 18.5 min when cells were starved for 3 h at 37°C, for 24 h at 10°C, and for 2 days at 5°C, respectively. In all cases, these increases were significant (P < 0.01), indicating that the stress imposed by starvation altered the ability of E. coli O157:H7 to survive subsequent heat treatments. Thermal tolerance was correlative with the induction of UspA and GrpE. At 5°C, the change in the thermal tolerance of the pathogen was positively linked to the induced expression of the grpE gene but negatively related to the expression of the uspA gene. The results obtained in this study indicate that UspA plays an important role in starvation-induced thermal tolerance at 37°C but that GrpE may be more involved in regulating this response at lower temperatures. An improvement in our understanding of the molecular mechanisms involved in these cross-protection responses may make it possible to devise strategies to limit their effects.


2008 ◽  
Vol 67 (4) ◽  
pp. 395-403 ◽  
Author(s):  
Melissa J. Morine ◽  
Cathal O'Brien ◽  
Helen M. Roche

The Human Genome Project and rapid advances in high-throughput molecular technologies are providing an unprecedented opportunity to advance the understanding of the common polygenic diet-related diseases, including obesity, the metabolic syndrome, type 2 diabetes mellitus, CVD and some cancers. In particular, transcriptomic approaches that allow multiple simultaneous gene-expression profiles facilitate the characterisation of metabolic perturbations that underlie diet-related pathologies. The present paper will focus on ‘transcriptomic signatures’ to characterise and understand the molecular mechanisms that accurately reflect ‘metabolic health’.


2020 ◽  
Vol 21 (4) ◽  
pp. 1360
Author(s):  
Weikun Jing ◽  
Shuai Zhang ◽  
Youwei Fan ◽  
Yinglong Deng ◽  
Chengpeng Wang ◽  
...  

In roses (Rosa sp.), peduncle morphology is an important ornamental feature. The common physiological abnormality known as the bent peduncle phenomenon (BPP) seriously decreases the quality of rose flowers and thus the commercial value. Because the molecular mechanisms underlying this condition are poorly understood, we analysed the transcriptional profiles and cellular structures of bent rose peduncles. Numerous differentially expressed genes involved in the auxin, cytokinin, and gibberellin signaling pathways were shown to be associated with bent peduncle. Paraffin sections showed that the cell number on the upper sides of bent peduncles was increased, while the cells on the lower sides were larger than those in normal peduncles. We also investigated the large, deformed sepals that usually accompany BPP and found increased expression level of some auxin-responsive genes and decreased expression level of genes that are involved in cytokinin and gibberellin synthesis in these sepals. Furthermore, removal of the deformed sepals partially relieved BPP. In summary, our findings suggest that auxin, cytokinin, and gibberellin all influence the development of BPP by regulating cell division and expansion. To effectively reduce BPP in roses, more efforts need to be devoted to the molecular regulation of gibberellins and cytokinins in addition to that of auxin.


2007 ◽  
Vol 55 (5) ◽  
pp. 367-369
Author(s):  
F. Jüttner

Over more than four decades odour research in the aquatic sciences has increasingly focused on cyanobacteria and the common odour-causing compounds, geosmin and 2-methylisoborneol. Success in future research requires a long-term perspective. Key areas for investigation are secondary metabolites and cyanobacteria, regulatory mechanisms for geosmin and other compounds' synthesis; understanding their spatial and temporal distribution (particularly relating to the food web in a habitat); and molecular mechanisms for liberation of geosmin by microorganisms.


2019 ◽  
Vol 34 (2) ◽  
pp. 455-474
Author(s):  
Rafael Guerrero-Rojas ◽  
Carlos Guerrero-Fonsecaz

2018 ◽  
Vol 45 (2) ◽  
pp. 70 ◽  
Author(s):  
Prachi Jain ◽  
Satish C. Bhatla

Nitric oxide (NO) signalling in plants is responsible for modulation of a variety of plant developmental processes. Depending on the tissue system, the signalling of NO-modulated biochemical responses majorly involves the processes of tyrosine nitration or S-nitrosylation of specific proteins/enzymes. It has further been observed that there is a significant impact of various biotic/abiotic stress conditions on the extent of tyrosine nitration and S-nitrosylation of various metabolic enzymes, which may act as a positive or negative modulator of the specific routes associated with adaptive mechanisms employed by plants under the said stress conditions. In addition to recent findings on the modulation of enzymes of primary metabolism by NO through these two biochemical mechanisms, a major mechanism for regulating the levels of reactive oxygen species (ROS) under stress conditions has also been found to be through tyrosine nitration or S-nitrosylation of ROS-scavenging enzymes. Recent investigations have further highlighted the differential manner in which the ROS-scavenging enzymes may be S-nitrosylated and tyrosine nitrated, with reference to their tissue distribution. Keeping in mind the very recent findings on these aspects, the present review has been prepared to provide an analytical view on the significance of protein tyrosine nitration and S-nitrosylation in plant development.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yeon-Mi Hong ◽  
Yohan Hong ◽  
Yeong-Gon Choi ◽  
Sujung Yeo ◽  
Soo Hee Jin ◽  
...  

In a previous study, we found that the short isoform of DNAJB6 (DNAJB6(S)) had been decreased in the striatum of a mouse model of Parkinson’s disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). DNAJB6, one of the heat shock proteins, has been implicated in the pathogenesis of PD. In this study, we explored the cytoprotective effect of DNAJB6(S) against 1-methyl-4-phenylpyridinium ion- (MPP+-) induced apoptosis and the underlying molecular mechanisms in cultured LN18 cells from astrocytic tumors. We observed that MPP+ significantly reduced the cell viability and induced apoptosis in LN18 glioblastoma cells. DNAJB6(S) protected LN18 cells against MPP+-induced apoptosis not only by suppressing Bax cleavage but also by inhibiting a series of apoptotic events including loss of mitochondrial membrane potential, increase in intracellular reactive oxygen species, and activation of caspase-9. These observations suggest that the cytoprotective effects of DNAJB6(S) may be mediated, at least in part, by the mitochondrial pathway of apoptosis.


2017 ◽  
Vol 4 (4) ◽  
pp. 843-855 ◽  
Author(s):  
Le Yue ◽  
Chuanxin Ma ◽  
Xinhua Zhan ◽  
Jason C. White ◽  
Baoshan Xing

We investigated the relative expressions of aquaporin genes and the levels of abscisic acid in maize upon exposure to La2O3 NPs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Menghui Yao ◽  
Chunyi Zhang ◽  
Congcong Gao ◽  
Qianqian Wang ◽  
Mengmeng Dai ◽  
...  

BackgroundSystemic lupus erythematosus (SLE) is an autoimmune disease that can affect multiple systems. Pulmonary arterial hypertension (PAH) has a close linkage with SLE. However, the inter-relational mechanisms between them are still unclear. This article aimed to explore the shared gene signatures and potential molecular mechanisms in SLE and PAH.MethodsThe microarray data of SLE and PAH in the Gene Expression Omnibus (GEO) database were downloaded. The Weighted Gene Co-Expression Network Analysis (WGCNA) was used to identify the co-expression modules related to SLE and PAH. The shared genes existing in the SLE and PAH were performed an enrichment analysis by ClueGO software, and their unique genes were also performed with biological processes analyses using the DAVID website. The results were validated in another cohort by differential gene analysis. Moreover, the common microRNAs (miRNAs) in SLE and PAH were obtained from the Human microRNA Disease Database (HMDD) and the target genes of whom were predicted through the miRTarbase. Finally, we constructed the common miRNAs–mRNAs network with the overlapped genes in target and shared genes. ResultsUsing WGCNA, four modules and one module were identified as the significant modules with SLE and PAH, respectively. A ClueGO enrichment analysis of shared genes reported that highly activated type I IFN response was a common feature in the pathophysiology of SLE and PAH. The results of differential analysis in another cohort were extremely similar to them. We also proposed a disease road model for the possible mechanism of PAH secondary to SLE according to the shared and unique gene signatures in SLE and PAH. The miRNA–mRNA network showed that hsa-miR-146a might regulate the shared IFN-induced genes, which might play an important role in PAH secondary to SLE.ConclusionOur work firstly revealed the high IFN response in SLE patients might be a crucial susceptible factor for PAH and identified novel gene candidates that could be used as biomarkers or potential therapeutic targets.


2020 ◽  
Author(s):  
Jianfa Qiu ◽  
Feifei Hu ◽  
Tingting Shao ◽  
Yuqiang Guo ◽  
Zongmao Dai ◽  
...  

AbstractHuman papillomavirus (HPV) is a dsDNA virus and its high-risk subtypes increase cancer risks. Yet, the mechanism of HPV infection and pathogenesis still remain unclear. Therefore, understanding the molecular mechanisms, and the pathogenesis of HPV are crucial in the prevention of HPV related cancers. In this study, we analyzed cervix squamous cell carcinoma (CESC) and head and neck carcinoma (HNSC) combined data to investigate various HPV induced cancer common feature. We showed that epidermal growth factor receptor (EGFR) was downregulated in HPV positive (HPV+) cancer, and that HPV+ cancer patients exhibited better prognosis than HPV negative (HPV−) cancer patients. Our study also showed that TP53 mutation rate is lower in HPV+ cancer than in HPV− cancer and that TP53 can be modulated by HPV E7 protein. However, there was no significant difference in the expression of wildtype TP53 in both groups. Subsequently, we constructed HPV-human interaction network and found that EGFR is a critical factor. From the network, we also noticed that EGFR is regulated by HPV E7 protein and hsa-miR-944. Moreover, while phosphorylated EGFR is associated with a worse prognosis, EGFR total express level is not significantly correlated with prognosis. This indicates that EGFR activation will induce a worse outcome in HPV+ cancer patients. Further enrichment analysis showed that EGFR downstream pathway and cancer relative pathway are diversely activated in HPV+ cancer and HPV− cancer. In summary, HPV E7 protein downregulates EGFR that downregulates phosphorylated EGFR and inhibit EGFR related pathways which in turn and consequently induce better prognosis.ImportanceAlthough HPV infection has been studied in various cancer types, there are only limited studies that have focused on the common effect of HPV related cancer. Consequently, this study focused on CESC and HNSC, two cancer types with high HPV infection proportion in cohort, thereby, intending to dig out the common effects and mechanisms of HPV+ cancers.Unlike some virus-human interaction prediction studies, the P-HIPSter database provides virus-human protein interaction based on protein structure prediction. Through this data, our interaction network was able to uncover previously unnoticed protein interactions. Our finding revealed that HPV infection caused various gene expression differences, and a great amount of which interact with EGFR, a cancer related gene. Therefore, since EGFR is associated with HPV+ cancer patients’ survival, some FDA proved EGFR inhibitors would be potential anti-HPV drugs.


Sign in / Sign up

Export Citation Format

Share Document