scholarly journals CmNAC73 Mediates the Formation of Green Color in Chrysanthemum Flowers by Directly Activating the Expression of Chlorophyll Biosynthesis Genes HEMA1 and CRD1

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 704
Author(s):  
Jing Luo ◽  
Huan Wang ◽  
Sijia Chen ◽  
Shengjing Ren ◽  
Hansen Fu ◽  
...  

Chrysanthemum is one of the most beautiful and popular flowers in the world, and the flower color is an important ornamental trait of chrysanthemum. Compared with other flower colors, green flowers are relatively rare. The formation of green flower color is attributed to the accumulation of chlorophyll; however, the regulatory mechanism of chlorophyll metabolism in chrysanthemum with green flowers remains largely unknown. In this study, we performed Illumina RNA sequencing on three chrysanthemum materials, Chrysanthemum vestitum and Chrysanthemum morifolium cultivars ‘Chunxiao’ and ‘Green anna,’ which produce white, light green and dark green flowers, respectively. Based on the results of comparative transcriptome analysis, a gene encoding a novel NAC family transcription factor, CmNAC73, was found to be highly correlated to chlorophyll accumulation in the outer whorl of ray florets in chrysanthemum. The results of transient overexpression in chrysanthemum leaves showed that CmNAC73 acts as a positive regulator of chlorophyll biosynthesis. Furthermore, transactivation and yeast one-hybrid assays indicated that CmNAC73 directly binds to the promoters of chlorophyll synthesis-related genes HEMA1 and CRD1. Thus, this study uncovers the transcriptional regulation of chlorophyll synthesis-related genes HEMA1 and CRD1 by CmNAC73 and provides new insights into the development of green flower color in chrysanthemum and chlorophyll metabolism in plants.

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 532 ◽  
Author(s):  
Sang Hoon Kim ◽  
Se Won Kim ◽  
Jaihyunk Ryu ◽  
Si-Yong Kang ◽  
Byoung-Cheorl Kang ◽  
...  

Radiation randomly induces chromosomal mutations in plants. However, it was recently found that the frequency of flower-color mutants could be specifically increased by upregulating anthocyanin pathway gene expression before radiation treatments. The mechanisms of chlorophyll biosynthesis and degradation are active areas of plant study because chlorophyll metabolism is closely connected to photosynthesis. In this study, we determined the dark/light treatment conditions that resulted in upregulation of the expression levels of six chlorophyll pathway genes, uroporphyrinogen III synthase (HEMD), uroporphyrinogen III decarboxylase (HEME2), NADPH-protochlorophyllide oxidoreductase (POR) A (PORA), chlorophyll synthase (CHLG), chlorophyllase (CLH2), and red chlorophyll catabolite reductase (RCCR), and measured their effects on the γ-irradiation-induced frequencies of leaf-color mutants in two Cymbidium cultivars. To degrade chlorophyll in rhizomes, 60–75 days of dark treatment were required. To upregulate the expressions of chlorophyll pathway genes, 10 days of light treatment appeared to be optimal. Dark/light treatments followed by γ-irradiation increased chlorophyll-related leaf mutants by 1.4- to 2.0-fold compared with γ-ray treatment alone. Dark/light treatments combined with γ-irradiation increased the frequency of leaf-color mutants in Cymbidium, which supports the wider implementation of a plant breeding methodology that increases the mutation frequency of a target trait by controlling the expression of target trait-related genes.


2020 ◽  
Author(s):  
Hao Sun ◽  
Jie Yu ◽  
Fan Zhang ◽  
Junmei Kang ◽  
Mingna Li ◽  
...  

Abstract Background: To explore the molecular regulatory mechanisms of early stem and leaf development, proteomic analysis was performed on leaves and stems of F genotype alfalfa, with thin stems and small leaves, and M genotype alfalfa, with thick stems and large leaves.Results: Based on fold-change thresholds of >1.20 or <0.83 (p<0.05), a large number of proteins were identified as being differentially enriched between the M and F genotypes: 249 downregulated and 139 upregulated in stems and 164 downregulated and 134 upregulated in leaves. The differentially enriched proteins in stems were mainly involved in amino acid biosynthesis, phenylpropanoid biosynthesis, carbon fixation, and phenylalanine metabolism. The differentially enriched proteins in leaves were mainly involved in porphyrin and chlorophyll metabolism, phenylpropanoid biosynthesis, starch and sucrose metabolism, and carbon fixation in photosynthetic organisms. Six differentially enriched proteins were mapped onto the porphyrin and chlorophyll metabolism pathway in leaves of the M genotype, including five upregulated proteins involved in chlorophyll biosynthesis and one downregulated protein involved in chlorophyll degradation. Eleven differentially enriched proteins were mapped onto the phenylpropanoid pathway in stems of the M genotype, including two upregulated proteins and nine downregulated proteins. Conclusion: Enhanced chlorophyll synthesis and decreased lignin synthesis provided a reasonable explanation for the larger leaves and lower levels of stem lignification in M genotype alfalfa. This proteomic study aimed to classify the functions of differentially enriched proteins and to provide information on the molecular regulatory networks involved in stem and leaf development.


2020 ◽  
Vol 145 (3) ◽  
pp. 174-185 ◽  
Author(s):  
Xinyi Chang ◽  
Junli Sun ◽  
Lianling Liu ◽  
Wang He ◽  
Baolong Zhao

Wild jujube (Ziziphus acidojujuba) and cultivated jujube (Ziziphus jujuba) belong to the family Rhamnaceae. Jujubes have marked drought- and salt-tolerant properties. After salt stress, wild jujube seedling growth was inhibited and photosynthetic efficiency was reduced. A bioinformatics approach was used to analyze the transcriptomics data from wild jujube seedlings grown under salt stress, and the genes differentially expressed under the salt stress were identified to provide a theoretical basis for the development and use of wild jujube plantations in salinized soil. The transcriptome sequencing from leaves of wild jujube seedlings was carried out using second-generation sequencing technology. The effects of salt stress on the differential expression of photosynthesis-related genes in wild jujube seedlings were analyzed. Transcriptome sequencing revealed a total of 5269 differentially expressed genes (DEGs), of which 2729 were up-regulated and 2540 were down-regulated. DEGs were mainly enriched with respect to photosynthesis, photosynthetic antenna proteins, glyoxylic acid and dicarboxylic acid metabolism, linolenic acid metabolism, cysteine and methionine metabolism, and porphyrin and chlorophyll metabolism. Among them, the photosynthesis pathway-related DEGs were most highly enriched. Further analysis of porphyrin and chlorophyll synthesis and photosynthesis-related pathways revealed that they were significantly enriched by 97 photosynthesis-related DEGs. The DEGs in the photosynthesis and photosynthetic antenna protein pathways were down-regulated, whereas the DEGs glutamyl-tRNA reductase (HEMA), ferrochelatase (HEMH), and pheophorbide a oxygenase (PAO) in the porphyrin and chlorophyll synthesis pathways were up-regulated, with the remainder being down-regulated. The nuclear gene encoding Rubisco, the key enzyme in the photosynthetic carbon fixation pathway, was also down-regulated. The results showed that the photosynthetic rate of wild jujube seedlings decreased following exposure to salinity stress, an effect that was related to the increased synthesis of 5-aminolevulinic acid and heme, and the up-regulation of expression of a gene encoding a chlorophyll-degrading enzyme, and was related to the down-regulation of gene expression in photosynthesis-related pathways such as light energy capture and carbon fixation. Selection of nine DEGs related to photosynthesis and chlorophyll biosynthesis by quantitative real-time-PCR confirmed that expression changes of these nine DEGs were consistent with the transcriptome sequencing results.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hao Sun ◽  
Jie Yu ◽  
Fan Zhang ◽  
Junmei Kang ◽  
Mingna Li ◽  
...  

Abstract Background To explore the molecular regulatory mechanisms of early stem and leaf development, proteomic analysis was performed on leaves and stems of F genotype alfalfa, with thin stems and small leaves, and M genotype alfalfa, with thick stems and large leaves. Results Based on fold-change thresholds of > 1.20 or < 0.83 (p < 0.05), a large number of proteins were identified as being differentially enriched between the M and F genotypes: 249 downregulated and 139 upregulated in stems and 164 downregulated and 134 upregulated in leaves. The differentially enriched proteins in stems were mainly involved in amino acid biosynthesis, phenylpropanoid biosynthesis, carbon fixation, and phenylalanine metabolism. The differentially enriched proteins in leaves were mainly involved in porphyrin and chlorophyll metabolism, phenylpropanoid biosynthesis, starch and sucrose metabolism, and carbon fixation in photosynthetic organisms. Six differentially enriched proteins were mapped onto the porphyrin and chlorophyll metabolism pathway in leaves of the M genotype, including five upregulated proteins involved in chlorophyll biosynthesis and one downregulated protein involved in chlorophyll degradation. Eleven differentially enriched proteins were mapped onto the phenylpropanoid pathway in stems of the M genotype, including two upregulated proteins and nine downregulated proteins. Conclusion Enhanced chlorophyll synthesis and decreased lignin synthesis provided a reasonable explanation for the larger leaves and lower levels of stem lignification in M genotype alfalfa. This proteomic study aimed to classify the functions of differentially enriched proteins and to provide information on the molecular regulatory networks involved in stem and leaf development.


1974 ◽  
Vol 1 (1) ◽  
pp. 119 ◽  
Author(s):  
DJ Simpson ◽  
CO Chichester ◽  
TH Lee

The effects of 2-(4-chlorophenylthio)ethyldiethylammonium chloride (CPTA) on chlorophyll accumulation, carotenoid biosynthesis and plastid ultrastructure were examined in expanding excised pumpkin cotyledons. CPTA in the dark caused an increased synthesis of non-photoconvertible protochlorophyll but had no effect on the ultrastructure of the starch-containing plastids. In the light, CPTA was a powerful inhibitor of chlorophyll synthesis in greening cotyledons, especially at high light intensity, and induced the accumulation of lycopene. When applied to the greened cotyledons, CPTA caused the transformation of the chloroplasts to chromoplast-like organelles containing osmiophilic globules and lycopene crystalloids. Two other structurally similar compounds,diethyl[4-{3'-(4"-methylphenyl)-3-oxoprop-2' -enyl}phenoxyethyl]ammonium chloride (SK&F 13831) and (2-chloroethyl)trimethylammonium chloride (chlormequat), also caused lycopene accumulation and inhibited chlorophyll synthesis. It is possible that CPTA can induce the formation of chromoplasts from proplastids and chloroplasts in tissue that does not normally contain such organelles.


2021 ◽  
Author(s):  
Nianci Xie ◽  
Chenyu Zhang ◽  
Pinqian Zhou ◽  
Xizhi Gao ◽  
Shuanghong Tian ◽  
...  

Abstract Background Camellia sinensis ‘Yanlinghuayecha’ (YHC) is a variegated mutant developed recently in China. To dissect the physiological and molecular mechanisms of leaf variegation, we compared the leaf pigmentation, cellular ultrastructure, amino acid content, and transcriptome between the albino (A), mosaic (M), and green (G) sectors.Results The contents of photosynthetic pigments were significantly lower in sector A and higher in sector G than in sector M. Chloroplasts with well-organized thylakoids were found only in the mesophyll cells of the G sector but not in those of the A sector. The A sector had a significantly higher content of total and free amino acids. In particular, the levels of theanine, glutamate, and alanine in the A sector were higher than those in the G sector. Transcriptomics analysis showed that a total of 44,908 unique transcripts were identified. Comparing the differentially expressed genes (DEGs) in the three sectors, we conducted an in-depth study on chloroplast biogenesis, chlorophyll biosynthesis, and theanine synthesis pathways. The expression of CsPPOX in “porphyrin and chlorophyll metabolism” was significantly downregulated in the A sector. CsLHCB6 in “Photosynthesis - antenna proteins” and CsSCY1 in “Protein processing in endoplasmic reticulum”, both of which were associated with chloroplast biogenesis, were significantly downregulated in the A sector. The expression of CsTS1 was notably upregulated in the A sector.Conclusion Taken together, variegation alters the gene activities involved in chloroplast biogenesis, and our results suggest that leaf colour change in the A sector incorporates three aspects compared with that in the G sector: (1) Decreased CsPPOX expression slows the rate of chlorophyll synthesis, resulting in a decrease in chlorophyll content; (2) downregulated expression of CsLHCB6 and CsSCY1 inhibits chloroplast biogenesis, decreasing thylakoid morphogenesis and grana stacking; and (3) the metabolic flow of glutamate changes, possibly from chlorophyll biosynthesis to theanine biosynthesis. The accumulation of precursor synthetic substances and the high expression of CsTS1 generates a high theanine content. These analyses provide valuable insights into variegation in tea plants with regard to leaf colour change and L-theanine accumulation.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 449
Author(s):  
Hansen Fu ◽  
Tuo Zeng ◽  
Yangyang Zhao ◽  
Tingting Luo ◽  
Huijie Deng ◽  
...  

Green chrysanthemums are difficult to breed but have high commercial value. The molecular basis for the green petal color in chrysanthemum is not fully understood. This was investigated in the present study by RNA sequencing analysis of white and green ray florets collected at three stages of flower development from the F1 progeny of the cross between Chrysanthemum × morifolium “Lüdingdang” with green-petaled flowers and Chrysanthemum vistitum with white-petaled flowers. The chlorophyll content was higher and chloroplast degradation was slower in green pools than in white pools at each developmental stage. Transcriptome analysis revealed that genes that were differentially expressed between the two pools were enriched in pathways related to chlorophyll metabolism and photosynthesis. We identified the transcription factor genes CmCOLa, CmCOLb, CmERF, and CmbHLH as regulators of the green flower color in chrysanthemum by differential expression analysis and weighted gene co-expression network analysis. These findings can guide future efforts to improve the color palette of chrysanthemum flowers through genetic engineering.


2020 ◽  
Author(s):  
Hao Sun ◽  
Jie Yu ◽  
Fan Zhang ◽  
Junmei Kang ◽  
Mingna Li ◽  
...  

Abstract Background: To explore the molecular regulatory mechanisms of early stem and leaf development, proteomic analysis was performed on leaves and stems of F genotype alfalfa, with thin stems and small leaves, and M genotype alfalfa, with thick stems and large leaves.Results: Based on fold-change thresholds of >1.20 or <0.83 (p<0.05), a large number of proteins were identified as being differentially enriched between the M and F genotypes: 249 downregulated and 139 upregulated in stems and 164 downregulated and 134 upregulated in leaves. The differentially expressed proteins in stems were mainly involved in amino acid biosynthesis, phenylpropanoid biosynthesis, carbon fixation, and phenylalanine metabolism. The differentially enriched proteins in leaves were mainly involved in porphyrin and chlorophyll metabolism, phenylpropanoid biosynthesis, starch and sucrose metabolism, and carbon fixation in photosynthetic organisms. Six differentially enriched proteins were mapped onto the porphyrin and chlorophyll metabolism pathway in leaves of the M genotype, including five upregulated proteins involved in chlorophyll biosynthesis and one downregulated protein involved in chlorophyll degradation. Eleven differentially enriched proteins were mapped onto the phenylpropanoid pathway in stems of the M genotype, including two upregulated proteins and nine downregulated proteins.Conclusion: Enhanced chlorophyll synthesis and decreased lignin synthesis provided a reasonable explanation for the larger leaves and lower levels of stem lignification in M genotype alfalfa. This proteomic study aimed to classify the functions of differentially enriched proteins and to provide information on the molecular regulatory networks involved in stem and leaf development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiaming Chen ◽  
Shuhua Wu ◽  
Fang Dong ◽  
Jianlong Li ◽  
Lanting Zeng ◽  
...  

Besides aroma and taste, the color of dry tea leaves, tea infusion, and infused tea leaves is also an important index for tea quality. Shading can significantly increase the chlorophyll content of tea leaves, leading to enhanced tea leaf coloration. However, the underlying regulatory mechanism remains unclear. In this study, we revealed that the expressions of chlorophyll synthesis genes were significantly induced by shading, specially, the gene encoding protochlorophyllide oxidoreductase (CsPOR). Indoor control experiment showed that decreased light intensity could significantly induce the expression of CsPOR, and thus cause the increase of chlorophyll content. Subsequently, we explored the light signaling pathway transcription factors regulating chlorophyll synthesis, including CsPIFs and CsHY5. Through expression level and subcellular localization analysis, we found that CsPIF3-2, CsPIF7-1, and CsHY5 may be candidate transcriptional regulators. Transcriptional activation experiments proved that CsHY5 inhibits CsPORL-2 transcription. In summary, we concluded that shading might promote the expression of CsPORL-2 by inhibiting the expression of CsHY5, leading to high accumulation of chlorophyll in tea leaves. The results of this study provide insights into the mechanism regulating the improvements to tea plant quality caused by shading.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 865
Author(s):  
Yeong Deuk Jo ◽  
Jaihyunk Ryu ◽  
Ye-Sol Kim ◽  
Kyung-Yun Kang ◽  
Min Jeong Hong ◽  
...  

Anthocyanins (a subclass of flavonoids) and flavonoids are crucial determinants of flower color and substances of pharmacological efficacy, respectively, in chrysanthemum. However, metabolic and transcriptomic profiling regarding flavonoid accumulation has not been performed simultaneously, thus the understanding of mechanisms gained has been limited. We performed HPLC-DAD-ESI-MS (high-performance liquid chromatography coupled with photodiode array detection and electrospray ionization mass spectrometry) and transcriptome analyses using “ARTI-Dark Chocolate” (AD), which is a chrysanthemum mutant cultivar producing dark-purple ray florets, and the parental cultivar “Noble Wine” for metabolic characterization and elucidation of the genetic mechanism determining flavonoid content. Among 26 phenolic compounds identified, three cyanidins and eight other flavonoids were detected only in AD. The total amounts of diverse flavonoids were 8.0 to 10.3 times higher in AD. Transcriptome analysis showed that genes in the flavonoid biosynthetic pathway were not up-regulated in AD at the early flower stage, implying that the transcriptional regulation of the pathway did not cause flavonoid accumulation. However, genes encoding post-translational regulation-related proteins, especially F-box genes in the mutated gene, were enriched among down-regulated genes in AD. From the combination of metabolic and transcriptomic data, we suggest that the suppression of post-translational regulation is a possible mechanism for flavonoid accumulation in AD. These results will contribute to research on the regulation and manipulation of flavonoid biosynthesis in chrysanthemum.


Sign in / Sign up

Export Citation Format

Share Document