scholarly journals Novel Candidate Genes Differentially Expressed in Glyphosate-Treated Horseweed (Conyza canadensis)

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1616
Author(s):  
Yongil Yang ◽  
Cory Gardner ◽  
Pallavi Gupta ◽  
Yanhui Peng ◽  
Cristiano Piasecki ◽  
...  

The evolution of herbicide-resistant weed species is a serious threat for weed control. Therefore, we need an improved understanding of how gene regulation confers herbicide resistance in order to slow the evolution of resistance. The present study analyzed differentially expressed genes after glyphosate treatment on a glyphosate-resistant Tennessee ecotype (TNR) of horseweed (Conyza canadensis), compared to a susceptible biotype (TNS). A read size of 100.2 M was sequenced on the Illumina platform and subjected to de novo assembly, resulting in 77,072 gene-level contigs, of which 32,493 were uniquely annotated by a BlastX alignment of protein sequence similarity. The most differentially expressed genes were enriched in the gene ontology (GO) term of the transmembrane transport protein. In addition, fifteen upregulated genes were identified in TNR after glyphosate treatment but were not detected in TNS. Ten of these upregulated genes were transmembrane transporter or kinase receptor proteins. Therefore, a combination of changes in gene expression among transmembrane receptor and kinase receptor proteins may be important for endowing non-target-site glyphosate-resistant C. canadensis.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yu-Fu Gao ◽  
Dong-Hui Zhao ◽  
Jia-Qi Zhang ◽  
Jia-Shuo Chen ◽  
Jia-Lin Li ◽  
...  

Abstract Background Leaf color is an important ornamental trait of colored-leaf plants. The change of leaf color is closely related to the synthesis and accumulation of anthocyanins in leaves. Acer pseudosieboldianum is a colored-leaf tree native to Northeastern China, however, there was less knowledge in Acer about anthocyanins biosynthesis and many steps of the pathway remain unknown to date. Results Anthocyanins metabolite and transcript profiling were conducted using HPLC and ESI-MS/MS system and high-throughput RNA sequencing respectively. The results demonstrated that five anthocyanins were detected in this experiment. It is worth mentioning that Peonidin O-hexoside and Cyanidin 3, 5-O-diglucoside were abundant, especially Cyanidin 3, 5-O-diglucoside displayed significant differences in content change at two periods, meaning it may be play an important role for the final color. Transcriptome identification showed that a total of 67.47 Gb of clean data were obtained from our sequencing results. Functional annotation of unigenes, including comparison with COG and GO databases, yielded 35,316 unigene annotations. 16,521 differentially expressed genes were identified from a statistical analysis of differentially gene expression. The genes related to leaf color formation including PAL, ANS, DFR, F3H were selected. Also, we screened out the regulatory genes such as MYB, bHLH and WD40. Combined with the detection of metabolites, the gene pathways related to anthocyanin synthesis were analyzed. Conclusions Cyanidin 3, 5-O-diglucoside played an important role for the final color. The genes related to leaf color formation including PAL, ANS, DFR, F3H and regulatory genes such as MYB, bHLH and WD40 were selected. This study enriched the available transcriptome information for A. pseudosieboldianum and identified a series of differentially expressed genes related to leaf color, which provides valuable information for further study on the genetic mechanism of leaf color expression in A. pseudosieboldianum.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kirsten E. McLoughlin ◽  
Carolina N. Correia ◽  
John A. Browne ◽  
David A. Magee ◽  
Nicolas C. Nalpas ◽  
...  

Bovine tuberculosis, caused by infection with members of the Mycobacterium tuberculosis complex, particularly Mycobacterium bovis, is a major endemic disease affecting cattle populations worldwide, despite the implementation of stringent surveillance and control programs in many countries. The development of high-throughput functional genomics technologies, including RNA sequencing, has enabled detailed analysis of the host transcriptome to M. bovis infection, particularly at the macrophage and peripheral blood level. In the present study, we have analysed the transcriptome of bovine whole peripheral blood samples collected at −1 week pre-infection and +1, +2, +6, +10, and +12 weeks post-infection time points. Differentially expressed genes were catalogued and evaluated at each post-infection time point relative to the −1 week pre-infection time point and used for the identification of putative candidate host transcriptional biomarkers for M. bovis infection. Differentially expressed gene sets were also used for examination of cellular pathways associated with the host response to M. bovis infection, construction of de novo gene interaction networks enriched for host differentially expressed genes, and time-series analyses to identify functionally important groups of genes displaying similar patterns of expression across the infection time course. A notable outcome of these analyses was identification of a 19-gene transcriptional biosignature of infection consisting of genes increased in expression across the time course from +1 week to +12 weeks post-infection.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Arun Sudhagar ◽  
Reinhard Ertl ◽  
Gokhlesh Kumar ◽  
Mansour El-Matbouli

Abstract Background Tetracapsuloides bryosalmonae is a myxozoan parasite which causes economically important and emerging proliferative kidney disease (PKD) in salmonids. Brown trout, Salmo trutta is a native fish species of Europe, which acts as asymptomatic carriers for T. bryosalmonae. There is only limited information on the molecular mechanism involved in the kidney of brown trout during T. bryosalmonae development. We employed RNA sequencing (RNA-seq) to investigate the global transcriptome changes in the posterior kidney of brown trout during T. bryosalmonae development. Methods Brown trout were exposed to the spores of T. bryosalmonae and posterior kidneys were collected from both exposed and unexposed control fish. cDNA libraries were prepared from the posterior kidney and sequenced. Bioinformatics analysis was performed using standard pipeline of quality control, reference mapping, differential expression analysis, gene ontology, and pathway analysis. Quantitative real time PCR was performed to validate the transcriptional regulation of differentially expressed genes, and their correlation with RNA-seq data was statistically analyzed. Results Transcriptome analysis identified 1169 differentially expressed genes in the posterior kidney of brown trout, out of which 864 genes (74%) were upregulated and 305 genes (26%) were downregulated. The upregulated genes were associated with the regulation of immune system process, vesicle-mediated transport, leucocyte activation, and transport, whereas the downregulated genes were associated with endopeptidase regulatory activity, phosphatidylcholine biosynthetic process, connective tissue development, and collagen catabolic process. Conclusion To our knowledge, this is the first RNA-seq based transcriptome study performed in the posterior kidney of brown trout during active T. bryosalmonae development. Most of the upregulated genes were associated with the immune system process, whereas the downregulated genes were associated with other metabolic functions. The findings of this study provide insights on the immune responses mounted by the brown trout on the developing parasite, and the host molecular machineries modulated by the parasite for its successful multiplication and release.


2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Zhenyu Jia ◽  
Shizhong Xu

Control-treatment design is widely used in microarray gene expression experiments. The purpose of such a design is to detect genes that express differentially between the control and the treatment. Many statistical procedures have been developed to detect differentially expressed genes, but all have pros and cons and room is still open for improvement. In this study, we propose a Bayesian mixture model approach to classifying genes into one of three clusters, corresponding to clusters of downregulated, neutral, and upregulated genes, respectively. The Bayesian method is implemented via the Markov chain Monte Carlo (MCMC) algorithm. The cluster means of down- and upregulated genes are sampled from truncated normal distributions whereas the cluster mean of the neutral genes is set to zero. Using simulated data as well as data from a real microarray experiment, we demonstrate that the new method outperforms all methods commonly used in differential expression analysis.


2019 ◽  
Author(s):  
Lulu Chen ◽  
Yingzhou Lu ◽  
Guoqiang Yu ◽  
Robert Clarke ◽  
Jennifer E. Van Eyk ◽  
...  

Tissue or cell subtype-specific and differentially-expressed genes (SDEGs) are defined as being differentially expressed in a particular tissue or cell subtype among multiple subtypes. Detecting SDEGs plays a critical rolse in molecularly characterizing and identifying tissue or cell subtypes, and facilitating supervised deconvolution of complex tissues. Unfortunately, classic differential analysis assumes a convenient null hypothesis and associated test statistic that is subtype-non-specific and thus, resulting in a high false positive rate and/or lower detection power with respect to particular subtypes. Here we introduce One-Versus-Everyone Fold Change (OVE-FC) test for detecting SDEGs. To assess the statistical significance of such test, we also propose the scaled test statistic OVE-sFC together with a mixture null distribution model and a tailored permutation scheme. Validated with realistic synthetic data sets on both type 1 error and detection power, OVE-FC/sFC test applied to two benchmark gene expression data sets detects many known and de novo SDEGs. Subsequent supervised deconvolution results, obtained using the SDEGs detected by OVE-FC/sFC test, showed superior performance in deconvolution accuracy when compared with popular peer methods.


Author(s):  
Jing Wang ◽  
Yuan-wei Zhang ◽  
Nian-jie Zhang ◽  
Shuo Yin ◽  
Du-ji Ruan ◽  
...  

Recently, the effect of endocrine-disrupting chemicals on the cancer procession has been a concern. Nonylphenol (NP) is a common environmental estrogen that has been shown to enhance the proliferation of colorectal cancer (CRC) cells in our previous studies; however, the underlying mechanism remains unclear. In this study, we confirmed the increased concentration of NP in the serum of patients with CRC. RNA sequencing was used to explore the differentially expressed genes after NP exposure. We found 16 upregulated genes and 12 downregulated genes in COLO205 cells after NP treatment. Among these differentially expressed genes, we found that coiled-coil domain containing 80 (CCDC80) was downregulated by NP treatment and was associated with CRC progression. Further experiments revealed that the overexpression of CCDC80 significantly suppressed NP-induced cell proliferation and recovered the reduced cell apoptosis. Meanwhile, the overexpression of CCDC80 significantly inhibited the activation of ERK1/2 induced by NP treatment. ERK1/2 inhibitor (PD98059) treatment also suppressed NP-induced CRC cell growth, but the overexpression of CCDC80 did not enhance the effect of ERK1/2 inhibitor. Taken together, NP treatment significantly inhibited the expression of CCDC80, and the overexpression of CCDC80 suppressed NP-induced CRC cell growth by inhibiting the activation of ERK1/2. These results suggest that NP could induce CRC cell growth by influencing the expression of multiple genes. CCDC80 and ERK1/2 inhibitors may be suitable therapeutic targets in NP-related CRC progression.


Sign in / Sign up

Export Citation Format

Share Document