scholarly journals Enhancing the Engineering Properties of Subgrade Materials Using Processed Waste: A Review

Geotechnics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 307-329
Author(s):  
Samuel Y. Amakye ◽  
Samuel J. Abbey ◽  
Colin A. Booth ◽  
Abdul-Majeed Mahamadu

Subgrade materials refer to the original ground underneath a road pavement, when these materials are made up of expansive soil it is referred to as expansive subgrade. Sometimes, these materials do not have sufficient capacity to support the weight of the road pavement and traffic load, which means they require some form of modification and re-engineering to enhance their load capacity. Chemical modification techniques using traditional stabilisers (such as cement and lime) have proved to be an effective means of subgrade stabilisation. However, high costs and environmental concerns associated with the use and production of these additives have highlighted the need for more sustainable and environmentally friendly substitutes. This study reviews the use of industrial by-products and other waste materials used for subgrade stabilisation, focusing on the sustainability of using processed wastes and how they alter the engineering properties of weak subgrade, compared to the use of cement and also reviews the availability of processed waste materials in quantities sufficient to meet the current demand for subgrade stabilisation. The findings illustrate that, processed waste is less expensive and has better sustainability credentials compared to cement. Moreover, processed wastes are available in sufficient quantities to meet existing demands for subgrade stabilisation. Therefore, it is recommended that the use of processed wastes should be promoted and utilised to improve and enhance the geotechnical properties of weak subgrade materials where possible.

Author(s):  
Apanpa, A. Kazeem ◽  
Olayiwola, Hameed ◽  
Anjonrin, Ademola

In order to access the cause(s) of road failure and proffer preventive measures for the future reconstruction of the Awotan-Akufo road, southwestern Nigeria, the geotechnical engineering properties of the subgrade soil, asphalt pavement thicknesses, drainage and traffic load were evaluated. Soil samples were collected from test pits 1 m deep and at an interval of 50 m and subjected to geotechnical analyses in accordance to AASTHO specification. The grain size distribution revealed that 70% of the entire samples from Awotan-Lifeforte and Adaba failed sections along Akufo road contain amount of fines more than 35% passing through sieve No. 200. The Natural Moisture Content range from 5.73 - 20.21% (Awotan-Lifeforte section) and the entire samples from Adaba failed sections have high natural moisture content ranging from 16.20 - 23.20%. From Atterberg limit test, the Liquid limit of 12 - 56% (Awotan-Lifeforte section) and 26.00 - 40.00% (Adaba Section) were obtained. The Plastic Limit and Plasticity Index of the soils ranges from 8.43 to 49.10% and 1.01 to 7.0% (Awotan-Lifeforte section), and 23.10 - 35.50% and 1.50 - 7.10% (Adaba Section) respectively. Linear shrinkage varies from 0.80 to 9.60% and from 3.10 to 8.80% for Awotan-Lifeforte and Adaba sections, respectively. The Maximum Dry Density of the soils ranged from 1.625 - 1.835 mg/m3 at Optimum Moisture Content of 13.4 - 17.3% (Lifeforte-Awotan section), and MDD of 1.752 - 1.975mg/m3 at Optimum Moisture Content of 13.4-17.3% (Adaba section). The unsoaked California Bearing Ratio are 30.08, 70.14, 39.08%, and the soaked California Bearing Ratio values are 26.17, 11.41, 33.41% (Lifeforte-Awotan section) respectively. At Adaba section of the road, the unsoaked California Bearing Ratio is 3.46, 87.70, 70.14%, and soaked California Bearing Ratio values are 3.42, 32.56, 39.83%. The average asphalt pavement thicknesses around Awotan-Lifeforte section range from 0.60 - 1.10 inches, and that of Adaba section range from 0.57 to 1.46 inches. The study concluded that the road pavement subgrade is silty clay and the geotechnical properties rated below the specifications of the Federal Ministry of Works and Housing at some failed portions. Asphalt pavement thicknesses are grossly inadequate and far below NAPA 2007 recommendation. As such the road cannot withstand the heavily loaded trucks that ply it on regular basis. All aforementioned contributed to the untimely failure of the road.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Sudarno Sudarno ◽  
Lulut Fadhilah ◽  
Achmad Afif ◽  
Siti Nurobingatun ◽  
Heru Hariyadi ◽  
...  

<p>Abstrak. The Highway that connect Magelang Purworejo is one of the Collector roads in Central Java. Magelang-Purworejo’s Highway has a fairly high traffic load, based on a survey conducted by LHR in 2017 of 4392 vehicles. A high enough amount of LHR causes the road to damage the hair cracked. Based on the above, the thickness of the pavement or overlay is planned. This plan begins with a survey of the number of passing vehicles for twenty-four hours (LHR), then surveying the carrying capacity of ground using DCP tools, then measuring the skill of using digital teodholit. Then look for references and secondary data in the form of traffic growth, rainfall data and road class data. After all the data obtained then calculated the thickness of road pavement using the method of Bina Marga 1987. Based on these calculations obtained the required re-layer is 3 cm.</p><p><br />Key word: road pavement, overlay, dynamic cone penetrometer</p>


2014 ◽  
Vol 587-589 ◽  
pp. 1328-1331
Author(s):  
Achmad Fauzi ◽  
Zuraidah Djauhari ◽  
Usama Juniansyah Fauzi

In general, clayey soil was used as material embankment for increasing road way level before road structure being constructed. Some types of clay are expansive soil, its have been contributing to pavement failures and subsequently causing increased annual maintenance expenditure of the road. The pavements design/redesign methods are found to be the primary cause of these failures. Thus, it is quite important to propose the Kuantan clay engineering properties chart for design criteria that can improve the embankment performance. Thus, it is quite important to investigate the Kuantan clay properties so that can improve the embankment performance. This paper was evaluated and utilized of the engineering properties of Kuantan Clayey as material embankment for roadway. The research were conducted soil engineering properties, standard compaction, four days soaked California Bearing Ratio (CBR) test to ten clayey samples from various sites in Kuantan. The 4 days soaked CBR of clayey samples were prepared at optimum water content. The chemical element was investigated by Integrated Electron Microscope and Energy-Dispersive X-Ray Spectroscopy (SEM-EDS) and linear regression analysis were used to anlyzing relation among engineering properties variables.


2022 ◽  
Vol 28 (1) ◽  
pp. 1-18
Author(s):  
Ahmed Al-Kalili ◽  
Ahmed S. Ali ◽  
Abbas J. Al-Taie

Soils that cause effective damages to engineer structures (such as pavement and foundation) are called problematic or difficult soils (include collapsible soil, expansive soil, etc.). These damages occur due to poor or unfavorited engineering properties, such as low shear strength, high compressibility, high volume changes, etc. In the case of expansive soil, the problem of the shrink-swell phenomenon, when the soil reacts with water, is more pronounced. To overcome such problems, soils can be treated or stabilized with many stabilization ways (mechanical, chemical, etc.). Such ways can amend the unfavorited soil properties. In this review, the pozzolanic materials have been selected to be presented and discussed as chemical stabilizers. The selected pozzolanic materials are traditional, industrial, or byproducts, ashes of agricultural wastes, and calcined-clay types. They are lime, cement, blast furnace slag, fly ash, silica fume, rice husk ash, sugarcane straw ash, egg ash, coconut husk ash, and metakaolin. In general, the stabilization of expansive soils with pozzolanic materials has an essential impact on swelling and Atterberg-limits and positively affects compaction and strength parameters. However, there is a wide range for the percentages of pozzolanic materials used as stabilizers. The content (15% to 20%) is the most ratios of the stabilizers used as an optimal percentage, and beyond this ratio, the addition of the pozzolanic materials produces an undesirable effect.


Author(s):  
Yan Pyrig ◽  
Andrey Galkin ◽  
Pavlo Roman

Asphalt pavement is permanently influenced by various environmental conditions and traffic load. Because of this after a certain period numerous defects may appear on the surface of the road pavement. These defects include peeling, chipping, pots, cracks etc. The low water proof resistance of the asphalt concrete (conditioned by low adhesion of the bitumen to aggregate surface) is considered to be one of the reasons for appearance of these defects. Adhesion promoters’ use is the most common method to increase adhesion activity of pavement bitumen. Goal. The objective of the current research work is the evaluation of influence of the domestic adhesion promoter iDOP on the conventional and adhesion properties of bitumen. Methodology. To achieve this goal, the following was done: the effect of the adhesive promoter iDOP on the standard quality indicators of bitumen was determined according the requirements of the current standards DSTY 4044 and SOU 45.2-00018112-067; the effect of the adhesive promoter on the adhesion of bitumen to the glass surface (according to the DSTU B.V.2.7-81 method) and to the surface of aggregates with different mineralogy was evaluated by the rotating bottle method according to DSTU EN 12697-11; the thermal stability of the iDOP-PH promoter was tested by simulating the technological ageing of bitumen according to the method given in GOST 18180 and the RTFOT method. Results. Grounding on the experimental data obtained, it was found that the adhesive promoter iDOP-PH does not affect the standard indicators of the quality of bitumen (penetration, softening and breaking point temperatures, ductility). During hardening with the RTFOT method, a slight inhibitory effect of the promoter is observed, which appears as an increase in the values of residual penetration and ductility compared to bitumen without promoter. The iDOP-PH promoter increases the adhesive capacity of bitumen, which is confirmed by the adhesion data determined by the improved method given in GOST B.V.2.7-81 and the rolling bottle method. Originality. It is shown that the iDOP-PH promoter has a relevantly low thermal stability. With this the main factor affecting the decrease in thermal stability is the long time exposing of the binder at high temperature by GOST B.V.2.7-81 method. Practical value. It is shown that the promoter concentrations recommended by the supplier are insufficient, and to ensure the required values of the adhesion (standardized in СОУ 45.2-00018112-067) it is advisable to increase the concentration of the iDOP-PH promoter in bitumen to 0.3 - 0.6%.


2021 ◽  
Vol 4 (4) ◽  
pp. 837
Author(s):  
Hans Hendito ◽  
Anissa Noor Tajudin

The most common causes of road damage are the design life of the road that has been passed, waterlogging on the road due to poor drainage, or even traffic load which can cause the service life of the road to be shorter than planned. To find out the conditions on the Jakarta-Cikampek Toll Road. Calculates the value of road pavement conditions calculated using the Indeks Kondisi Perkerasan (IKP) on the Jakarta-Cikampek Toll Road. To find out what kind of treatment we should do for the damage that occurs. The Indeks Kondisi Perkerasan is a quantitative indicator of pavement conditions that has a range of values ranging from 0 – 100, with a value of 0 representing the worst pavement condition while 100 representing the best pavement condition. The IKP method has a level of handling type for each IKP value. According to the IKP guidelines, the type of handling that must be carried out with an average IKP value of 96,32 is routine maintenance. For further research, it’s necessary to conduct a direct survey, so that accurate results can be obtained. It is necessary to study with various methods to be able to compare the level of accuracy of a method. ABSTRAKPenyebab kerusakan jalan yang paling umum adalah umur rencana jalan yang telah dilewati, genangan air pada jalan yang diakibatkan drainase yang buruk, atau bahkan beban lalu lintas yang berlebihan yang dapat menyebabkan umur pakai jalan akan menjadi lebih pendek daripada perencanaannya. Untuk mengetahui kondisi pada jalan Tol Jakarta-Cikampek. Menghitung nilai kondisi perkerasan jalan jika dihitung dengan Indeks Kondisi Perkerasan (IKP) pada ruas Tol Jakarta-Cikampek. Untuk mengetahui penanganan seperti apa yang harus kita lakukan terhadap kerusakan yang terjadi. Kondisi Perkerasan atau IKP adalah indikator kuantitatif (numerik) kondisi perkerasan yang mempunyai rentang nilai mulai 0 – 100, dengan nilai 0 nya menyatakan kondisi perkerasan paling jelek sementara 100 menyatakan kondisi perkerasan terbaik. Metode IKP memiliki tingkat jenis penanganan tiap nilai IKP. Menurut pedoman IKP, jenis penanganan yang harus dilakukan dengan nilai IKP rata-rata 96,32 adalah pemeliharaan rutin. Untuk penelitian selanjutnya, perlu untuk survei secara langsung, supaya hasil yang didapat lebih maksimal. Perlu diteliti dengan metode yang beragam untuk dapat membandingkan tingkat keakuratan sebuah metode.


2019 ◽  
Vol 2 (1) ◽  
pp. 48-57
Author(s):  
Mukhlis Mukhlis ◽  
Yuhanis Yunus ◽  
Sofyan M. Saleh

The segmented road of Bireuen-Takengon has often damaged in apart of its pavement structure due to the area of flexible pavement structure taken place upon an expansive soil that leads to depreciation caused by the influence of changes in the water level. The aim of this research method was to analyze the characteristics of the base soil underlying the pavement and to analyze the flexible pavement structure in the widening of the road. The observed area was Sta.70+175 s/d Sta.74+925 which taken place in Bener Meriah regency, sub-district of Timang Gajah. The results of USCS clarification show that the road of basal soil is included in the MH OH with a PI value of 25.42%, LL 64.25% with a potential level of development and activity belonging to the medium-high category and also having mineral types of Illite. From the analysis of KENPAVE software, the design of flexible pavement structures is based on data planning that has a maximum stress and deflection value, on the base soil, of 0.1814 kg/cm2 and 0.0585 cm respectively. Moreover, based on Job mix data the maximum value of stress and deflection is 0.2444 kg/cm2 and 0.0585 cm respectively in which both of two stress and deflections are within the allowable limit; which both of two stress and deflections are within the allowable limit; 7.8 kg/cm2 and 2.5 cm. The evaluation results of both data are feasible to be used as an improved design on the pavement as the pressure generated by the weight of the road pavement structure is 1.949 kg/cm2, while the swell pressure that occurs on subgrade is 1.805 kg/cm2. Hence, The flexible pavement structure on the road segment is still able to reduce the swell potential on expansive soil.


Author(s):  
Bayu Tirta Leksana Purnomo ◽  
Latif Budi Suparman ◽  
Agus Taufik Mulyono

<em>The development of infrastructure in Indonesia was increasing. The government focuses on boosting infrastructure development to create long-term economic growth. Therefore, a qualified infrastructure was a standard of an advanced rapidly economy. One of them is under construction was road and toll road infrastructure. As a result of the development was the occurrence of the increasing volume of vehicles on the road. Due to this resulting in an increased load reposition and also increased vehicle load on the road, it was then combined with a wet tropical climate or humid warm areas in Indonesia that have high rainfall and temperatures that can reach 38<sup>o</sup>C, resulting in structural damage such as cracks, rutting, stripping, and pothole. Performance from pavement also declined faster than the estimated plan. Roads in Indonesia mostly use the type of concrete asphalt mixture. Characteristics for concrete asphalt prioritize stability. In fact, the most important thing was the stability and durability of the road. Various ways can be done to overcome the road damage and acquire the ideal characteristics such as the use of added materials to Hot Mix Asphalt. To improve the performance of pavement characteristics, the use of added materials was expected to overcome problems that are affected by temperature, weather, increased vehicle volume, and increased traffic load. The added materials are to enhance Reacted and Activated Rubber (RAR) which was a developed crumb rubber to increase durability and keep the level of road pavement stability.</em>


2019 ◽  
Vol 14 (2) ◽  
pp. 1
Author(s):  
Dwina Archenita

Traffic is an important part of road pavement design in addition to subgrade strength. This is because traffic is a burden for the road and is very decisive in the thick planning of each layer of pavement. Thus the calculation of the traffic load should have been carried out before carrying out the design of the pavement. The Sicincin - Lubuk Alung ring road section located in Kab.Padang Pariaman is one of the road sections designed with pavement design. Therefore, a traffic survey was carried out on the road section. Traffic surveys are carried out for three days, two days on weekdays and one day on holidays. Every day the survey time is divided into three times, morning, afternoon and evening at rush hour. The survey in the morning takes place at 07:15 - 08:15 and 08:15 - 09:15 while in the afternoon it takes place at 13:00 - 14:00 and 14:00 - 15:00. Furthermore, for the afternoon survey, it will be held at 16:00 - 17:00 and 17:00 - 18:00. After processing the data, in each survey period the LHR value is obtained for both directions. The LHR value used for pavement design is the largest LHR value of all LHR values obtained.


2018 ◽  
Vol 64 (4) ◽  
pp. 197-209 ◽  
Author(s):  
P. Radziszewski ◽  
M. Sarnowski ◽  
A. Plewa ◽  
P. Pokorski

Abstract Asphalt mixtures are commonly used for the pavement construction for national roads with a high traffic load, as well as local roads with low traffic load. The constructions of local road pavement consisting of thinner, more flexible layers located on less stable subbase than the pavement of national roads, require reinforcement with asphalt layers characterized by increased fatigue life. Technologies that allow quick repairs and reinforcements, while improving the durability of the road pavement are being sought. Such technologies include the use of modifications of asphalt mixtures with special fibers. The paper presents the results of investigations of the properties of asphalt mixtures modified with innovative basalt-polymer fibers FRP. On the basis of the obtained test results according to the Marshall method, stiffness modulus and fatigue durability, the technical properties of asphalt mixtures with FRP fibers addition were improved. This technology significantly increases the fatigue life of asphalt concrete dedicated for repairs and reinforcements of road pavements.


Sign in / Sign up

Export Citation Format

Share Document