scholarly journals Investigation of Building Materials Belonging to the Ruins of the Tsogt Palace in Mongolia

Heritage ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 2494-2514
Author(s):  
Alessandro Sardella ◽  
Sonia Canevarolo ◽  
Elena Marrocchino ◽  
Francesca Tittarelli ◽  
Alessandra Bonazza

This work focuses on the characterisation of the heritage building materials (plasters, mortars, bricks and glazed tiles) of the Tsogt Palace’s ruins located in the Bulgan Province of Mongolia. In addition, contribution is also given to a preliminary evaluation of their state of conservation in consideration of the climate conditions to which the site is exposed. To accomplish the objectives, information on the climate and historical context have been acquired. A set of analytical methodologies has been applied on the seventeen samples collected: Polarized Light (PLM) and Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy (SEM-EDX), X-Ray Diffraction (XRPD), Raman Spectroscopy and Ion Chromatography (IC). The data obtained allowed us to achieve a mineralogical and petrographic characterisation of the samples, underlining the nature of the binder in mortars and plasters, the type of clay used as raw material for bricks and tile, their hypothetical firing temperature and the aggregate composition. Moreover, it was also possible to identify the colouring coating typology in tiles and their process of production. Regarding the state of conservation, the principal deterioration phenomena affecting the site due to environmental impact can be also hypothesised, even though major studies are necessary for an exhaustive assessment.

MRS Advances ◽  
2018 ◽  
Vol 3 (61) ◽  
pp. 3575-3579
Author(s):  
Francine M. Nunes ◽  
Eduarda M. Rangel ◽  
Fernando M. Machado ◽  
Rubens Camaratta ◽  
Letícia P. Cardoso ◽  
...  

AbstractThe food processing industry highlights the daily generation of large amounts of eggshell solid residue. In this way, this residue becomes a non renewable raw material to be reused as an additive in red ceramics, in order to reduce the volume of disposal to the environment and improve the physical properties of the product. The objective of this work was to evaluate the forming moisture, linear shrinkage of drying and shrinkage of drying burning of ceramic test pieces (CS’s) with formulations with 2% and 3% of white eggshell residue (ER) incorporated in clay. The clay and ER were collected in the city of Pelotas-RS. The ER sample was analyzed by X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD). After pressing, natural and artificial drying was carried out and the CS’s were burned. These were evaluated through normative parameters C-020/95, C-021/95 and C-026/95. The values obtained for the forming moisture were between 5.82 and 8.78%, for the linear shrinkage of drying between 0.10 and 0.43% and, for the linear contraction burning between -0.29 and 0.08%. The results showed that the addition of ER to the ceramic mass helped in the reduction of the forming moisture and the linear shrinkage of the ceramic test pieces.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


2009 ◽  
Vol 73 (6) ◽  
pp. 1027-1032 ◽  
Author(s):  
F. Nestola ◽  
A. Guastoni ◽  
L. Bindi ◽  
L. Secco

AbstractDalnegroite, ideally Tl4Pb2(As12Sb8)Σ20S34, is a new mineral from Lengenbach, Binntal, Switzerland. It occurs as anhedral to subhedral grains up to 200 μm across, closely associated with realgar, pyrite, Sb-rich seligmanite in a gangue of dolomite. Dalnegroite is opaque with a submetallic lustre and shows a brownish-red streak. It is brittle; the Vickers hardness (VHN25) is 87 kg mm-2(range: 69—101) (Mohs hardness ∼3—3½). In reflected light, dalnegroite is highly bireflectant and weakly pleochroic, from white to a slightly greenish-grey. In cross-polarized light, it is highly anisotropic with bluish to green rotation tints and red internal reflections.According to chemical and X-ray diffraction data, dalnegroite appears to be isotypic with chabournéite, Tl5-xPb2x(Sb,As)21-xS34. It is triclinic, probable space groupP1, witha= 16.217(7) Å,b= 42.544(9) Å,c= 8.557(4) Å, α = 95.72(4)°, β = 90.25(4)°, γ = 96.78(4)°,V= 5832(4) Å3,Z= 4.The nine strongest powder-diffraction lines [d(Å) (I/I0) (hkl)] are: 3.927 (100) (10 0); 3.775 (45) (22); 3.685 (45) (60); 3.620 (50) (440); 3.124 (50) (2); 2.929 (60) (42); 2.850 (70) (42); 2.579 (45) (02); 2.097 (60) (024). The mean of 11 electron microprobe analyses gave elemental concentrations as follows: Pb 10.09(1) wt.%, Tl 20.36(1), Sb 23.95(1), As 21.33(8), S 26.16(8), totalling 101.95 wt.%, corresponding to Tl4.15Pb2.03(As11.86Sb8.20)S34. The new mineral is named for Alberto Dal Negro, Professor in Mineralogy and Crystallography at the University of Padova since 1976.


2020 ◽  
Vol 10 (11) ◽  
pp. 4032
Author(s):  
Anna-Marie Lauermannová ◽  
Michal Lojka ◽  
Filip Antončík ◽  
David Sedmidubský ◽  
Milena Pavlíková ◽  
...  

The search for environmentally sustainable building materials is currently experiencing significant expansion. It is increasingly important to find new materials or reintroduce those that have been set aside to find a good replacement for Portland cement, which is widely used despite being environmentally insufficient and energy-intensive. Magnesium oxybromides, analogues to well-known magnesium oxychloride cements, fit both categories of new and reintroduced materials. In this contribution, two magnesium oxybromide phases were prepared and thoroughly analyzed. The stoichiometries of the prepared phases were 5Mg(OH)2∙MgBr2∙8H2O and 3Mg(OH)2∙MgBr2∙8H2O. The phase analysis was determined using X-ray diffraction. The morphology was analyzed with scanning and transmission electron microscopy. The chemical composition was studied using X-ray fluorescence and energy dispersive spectroscopy. Fourier transform infrared spectroscopy was also used. The thermal stability and the mechanism of the release of gasses linked to the heating process, such as water and hydrobromic acid evaporation, were analyzed using simultaneous thermal analysis combined with mass spectroscopy. The obtained results were compared with the data available for magnesium oxychlorides.


2020 ◽  
Vol 849 ◽  
pp. 113-118
Author(s):  
Yayat Iman Supriyatna ◽  
Slamet Sumardi ◽  
Widi Astuti ◽  
Athessia N. Nainggolan ◽  
Ajeng W. Ismail ◽  
...  

The purpose of this study is to characterize Lampung iron sand and to conduct preliminary experiments on the TiO2 synthesis which can be used for the manufacturing of functional food packaging. The iron sand from South Lampung Regency, Lampung Province that will be utilized as raw material. The experiment was initiated by sieving the iron sand on 80, 100, 150, 200 and 325 mesh sieves. Analysis using X-Ray Fluorescence (XRF) to determine the element content and X-Ray Diffraction (XRD) to observe the mineralization of the iron sand was conducted. The experiment was carried out through the stages of leaching, precipitation, and calcination. Roasting was applied firstly by putting the iron sand into the muffle furnace for 5 hours at a temperature of 700°C. Followed by leaching using HCl for 48 hours and heated at 105°C with a stirring speed of 300 rpm. The leaching solution was filtered with filtrate and solid residue as products. The solid residue was then leached using 10% H2O2 solution. The leached filtrate was heated at 105°C for 40 minutes resulting TiO2 precipitates (powder). Further, the powder was calcined and characterized. Characterization of raw material using XRF shows the major elements of Fe, Ti, Mg, Si, Al and Ca. The highest Ti content is found in mesh 200 with 9.6%, while iron content is about 80.7%. While from the XRD analysis, it shows five mineral types namely magnetite (Fe3O4), Rhodonite (Mn, Fe, Mg, Ca) SiO3, Quart (SiO2), Ilmenite (FeOTiO2) and Rutile (TiO2). The preliminary experiment showed that the Ti content in the synthesized TiO2 powder is 21.2%. The purity of TiO2 is low due to the presence of Fe metal which is dissolved during leaching, so that prior to precipitation purification is needed to remove impurities such as iron and other metals.


Author(s):  
F. Mostefa ◽  
Nasr Eddine Bouhamou ◽  
H.A. Mesbah ◽  
Salima Aggoun ◽  
D. Mekhatria

This work aims to study the feasibility of making a geopolymer cement based on dredged sediments, from the Fergoug dam (Algeria) and to evaluate their construction potential particularly interesting in the field of special cementitious materials. These sediments due to their mineralogical composition as aluminosilicates; are materials that can be used after heat treatment. Sedimentary clays were characterized before and after calcination by X-ray diffraction, ATG / ATD, spectroscopy (FTIR) and XRF analysis. The calcination was carried out on the raw material sieved at 80 μm for a temperature of 750 ° C, for 3.4 and 5 hours. The reactivity of the calcined products was measured using isothermal calorimetric analysis (DSC) on pastes prepared by mixing an alkaline solution of sodium hydroxide (NaOH) 8 M in an amount allowing to have a Na / Al ratio close to 1 (1: 1). Also, cubic mortar samples were prepared with a ratio L / S: 0.8, sealed and cured for 24 hours at 60 ° C and then at room temperature until the day they were submited to mechanical testing. to check the extent of geopolymerization. The results obtained allowed to optimize the calcination time of 5 hours for a better reactivity of these sediments, and a concentration of 8M of sodium hydroxide and more suitable to have the best mechanical performances.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


2012 ◽  
Vol 454 ◽  
pp. 324-328
Author(s):  
Yan He ◽  
Ya Jing Liu ◽  
Yong Lin Cao ◽  
Li Xia Zhou

Infra-red absorption spectrometry, X-ray diffraction observations and characterization tests based on silicon molybdenum colorimetric method were used to investigate the optimal pH value controlling the stability of the silicic acid form. The experiment process was done by using sodium silicate as raw material. The results showed that the solution of silicate influenced the polymerization. The active silicic acid solution with a certain degree of polymerization was obtained by controlling the pH values.


2018 ◽  
Vol 24 (5) ◽  
pp. 813-820 ◽  
Author(s):  
Junjie Wu ◽  
Xiang Xu ◽  
Zhihao Zhao ◽  
Minjie Wang ◽  
Jie Zhang

Purpose The purpose of this paper is to investigate the effect of selective laser sintering (SLS) method on morphology and performance of polyamide 12. Design/methodology/approach Crystallization behavior is critical to the properties of semi-crystalline polymers. The crystallization condition of SLS process is much different from others. The morphology of polyamide 12 produced by SLS technology was investigated using scanning electron microscopy, polarized light microscopy, differential scanning calorimetry, X-ray diffraction and wide-angle X-ray diffraction. Findings Too low fill laser power brought about bad fusion of powders, while too high energy input resulted in bad performance due to chain scission of macromolecules. There were three types of crystal in the raw powder material, denoted as overgrowth crystal, ring-banded spherulite and normal spherulite. Originality/value In this work, SLS samples with different sintering parameters, as well as compression molding sample for the purpose of comparison, were made to study the morphology and crystal structure of sintered PA12 in detail.


Clay Minerals ◽  
2009 ◽  
Vol 44 (1) ◽  
pp. 35-50 ◽  
Author(s):  
Yun Huang ◽  
Xiaoyan Ma ◽  
Guozheng Liang ◽  
Hongxia Yan

AbstractMelt blending using a twin-screw extruder was used to prepare composites of polypropylene (PP)/organic rectorite (PR). The organic rectorite (OREC) was modified with dodecyl benzyl dimethyl ammonium bromide (1227). Wide-angle X-ray diffraction (WAXD) and transmission electron microscopy were used to investigate the dispersion of OREC in the composites. The d spacings of OREC in PR composites was greater than in OREC itself. The dispersion of OREC particles in the PP polymer matrix was fine and uniform when the clay content was small (2 wt.%). The rheology was characterized using a capillary rheometer. The processing behaviour of the PR system improved as the amount of OREC added increased. Non-isothermal crystallization kinetics were analysed using differential scanning calorimetry. It was shown that the addition of OREC had a heterogeneous nucleation effect on PP, and can accelerate the crystallization. However, only when fine dispersion was achieved, and at lower rates of temperature decrease, was the crystallinity greater. Wide-angle X-ray diffraction and polarized light microscopy were used to observe the crystalline form and crystallite size. The PP in the PR composites exhibited an a-monoclinic crystal form, as in pure PP, and in both cases a spherulite structure was observed. However, the smaller spherulite size in the PR systems indicated that addition of OREC can reduce the crystal size significantly, which might improve the ‘toughness’ of the PP. The mechanical properties (tensile and impact strength) improved when the amount of OREC added was appropriate. Dynamic mechanical analysis showed that the storage modulus (E′) and loss modulus (E″) of the nanocomposites were somewhat greater than those of pure PP when an appropriate amount of OREC was added. Finally, thermogravimetric analysis showed that the PR systems exhibited a greater thermal stability than was seen with pure PP.


Sign in / Sign up

Export Citation Format

Share Document