scholarly journals Effects of Water Stress on Vegetative Growth and ‘Merlot’ Grapevine Yield in a Semi-Arid Mediterranean Climate

Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 95
Author(s):  
Juan L. Chacón-Vozmediano ◽  
Jesús Martínez-Gascueña ◽  
Francisco J. García-Navarro ◽  
Raimundo Jiménez-Ballesta

Water stress is considered to be the most influential type of abiotic stress to which plants may be exposed. In grapevines (Vitis vinifera L.), it is a common practice to keep plants under water stress at different stages of the season with the aim of reducing yield and improving the composition of the fruit. The objective of this study was to evaluate foliar development and yield of ‘Merlot’ grapevines grown in the field when they are subjected to different levels of water stress in a semi-arid Mediterranean climate. Four treatments with different levels of water stress were applied during two phenological intervals (flowering-veraison and veraison-maturity) to 128 grapevines for a period of two consecutive years. The levels of water stress were none-light, light-moderate, moderate-intense, and intense-intense for the flowering-veraison and veraison-maturity intervals, respectively. The results revealed that the total leaf area, the exposed leaf area, and the yield all decreased as the degree of water stress increased. The weight of the berry was a decisive factor in determining yield. The least restrictive water regime treatment gave the heaviest berries and bunches and, as a result, the highest yields.

Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 161
Author(s):  
Juan L. Chacón-Vozmediano ◽  
Jesús Martínez-Gascueña ◽  
Esteban García-Romero ◽  
Sergio Gómez-Alonso ◽  
Francisco J. García-Navarro ◽  
...  

Of all the abiotic stress types to which plants grown in fields are exposed, the most influential is water stress. It is well accepted that adopting controlled deficit irrigation strategies during the growing season has beneficial effects on the chemical compositions of grapes and red wines. However, there is a discrepancy in the timing, intensity and duration of deficit. This study aimed to evaluate the changes in phenolic composition of ‘merlot’ cultivar grapes when subjected to different levels of water stress in a semi-arid Mediterranean climate. Four treatments with different water stress levels were applied within two phenological intervals (flowering-veraison, veraison-maturity) to 128 grapevines for two consecutive years. The water stress levels for Treatments 1, 2, 3 and 4 were: no-light, light-moderate, moderate-intense and intense for the flowering-veraison and veraison-maturity intervals, respectively. Water stress distinctly affected the phenolic compounds in skin and seeds. The concentrations of flavan-3-ols and total polyphenols were much higher in seeds than in skin, and in both fractions, tannins are the major compounds.


1956 ◽  
Vol 7 (2) ◽  
pp. 98 ◽  
Author(s):  
JN Black

Changes in the pre-emergence distribution of dry matter in subterranean clover (Trifolium subterraneum L.) variety Bacchus Marsh were followed at 21°C, using three sizes of seed and three depths of sowing, ½, 1¼, and 2 in. Decreasing seed size and increasing depth of sowing both reduce the weight of the cotyledons a t emergence. Seed of the three sizes were sown a t three depths in pot culture a t staggered intervals so that emergence was simultaneous. Dry weight in the early vegetative stage was proportional to seed size, and total leaf area and leaf numbers showed similar trends. Plants of each seed size grew at the same relative rate. No effect of depth of sowing could be detected, and this was shown to be due to the cotyledon area a t emergence being constant for any given seed size, regardless of varying depth of sowing and hence of cotyledon weight. It was concluded that seed size in a plant having epigeal germination and without endosperm is of importance: firstly, in limiting the maximum hypocotyl elongation and hence depth of sowing, and secondly, in determining cotyledon area. Cotyledon area in turn influences seedling growth, which is not affected by cotyledon weight. Once emergence has taken place, cotyledonary reserves are of no further significance in the growth of the plants.


2009 ◽  
Vol 23 (1) ◽  
pp. 130-135 ◽  
Author(s):  
André Mantovani ◽  
Ricardo Rios Iglesias

The amount of resources invested in reproduction is closely correlated to plant size. However, the increase in reproductive investment is not always proportional to the increase in vegetative growth, as the proportion of plant resources allocated to reproduction can increase, decrease or be maintained along different plant sizes. Although comprising thousand of species, epiphytes are poorly studied in relation to reproductive allocation (RA). We describe the variation in the RA of the epiphytic bromeliad Tillandsia stricta Soland with increasing plant sizes. Our goal is not only to evaluate the RA of the whole inflorescence but also quantify the contribution of ancillary structures in the final RA of this plant species. With increasing sizes of T. stricta the reproductive allocation of biomass to the whole inflorescence decreased significantly along plant sizes from 37% to 12%. Reproductive allocation to ancillary and to flowers decreased respectively from 30% to 9% and 10% to 3%. As leaves are the main source of water and nutrients absorption in atmospheric Tillandsia, the total leaf area and area per leaf were used as indicators of foraging capacity, that also increased with plant size. We discuss these results with respect to the capacity of T. stricta to reproduce in the heterogeneous environment of the canopies.


OENO One ◽  
2020 ◽  
Vol 54 (4) ◽  
pp. 975-983
Author(s):  
Javier Abad ◽  
Marín Diana ◽  
Santesteban L. Gonzaga ◽  
Cibriáin José Félix ◽  
Sagüés Ana

This study aims to evaluate the interest of using an under-vine cover crop as a sustainable management tool replacing herbicides or tillage to control weeds, evaluating its effects on yield and berry parameters in a semi-arid climate. The performance of Trifolium fragiferum as an under-vine cover crop was evaluated in 2018 and 2019 in a Merlot vineyard in Traibuenas (Navarra, Spain). This trial showed that the soil under the vines was covered by 80 % of the cover crop in August 2018 and 100 % in Aug 2019, with clover (T. fragiferum) comprising around 26 % and 70 % of the cover crop surface, respectively. The presence of the cover crop only reduced the number of shoots in the second year, although both years there was an increment in water stress. Neither yield, cluster weight nor berry weight were affected by the presence of the under-vine cover crop. Similarly, no changes in grape composition were observed. The use of T. fragiferum-like cover crops under the vine allows for better control of weeds, provided a good installation is achieved. In the first two years, this cover crop reduced vegetative growth and increased water deficit slightly. However, no changes in yield and grape composition were observed.In a context of herbicide suppression and search for sustainable management, under-vine clover cover crops constitute a viable alternative in semi-arid regions provided drip irrigation can be applied. 


2016 ◽  
Vol 22 (1) ◽  
pp. 50
Author(s):  
Reivany Eduardo Morais Lima ◽  
Fábio Costa Farias ◽  
Marlos Alves Bezerra ◽  
Fred Carvalho Bezerra

The aim of this work was evaluate the effect of different levels of light intensity on the physiology, vegetative and reproductive development of Heliconia bihai cv. Lobster Claw Two grown under coastal zone of Ceara State. Plants of this species were grown under full and 30%, 40% and 50% reduction sunlight intensity. It was evaluated the number of leaves and tillers per plant; amount of stalks; leaf area, water and carbohydrate content in the leaf next to the inflorescence arising and next to the inflorescence at harvest stage. Photosynthesis, transpiration and stomatal conductance of plants were measured for six consecutive months. Significant difference were attained for leaf area and water content in leaves close to the inflorescence at harvest stage, with lower values, and carbohydrate contents in leaves, with higher values in plants grown in full sun. The treatments with lower levels of solar radiation had higher amounts of stalks and higher vegetative growth, the reduction in vegetative growth of the plants under full sun was due to the lower photosynthetic rate and lower translocation of assimilates.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 696-698 ◽  
Author(s):  
F.J. Montero ◽  
J.A. de Juan ◽  
A. Cuesta ◽  
A. Brasa

The importance of rapid, nondestructive, and accurate measurements of leaf area (LA) in agronomic and physiological studies is well known, but a search of the literature revealed little information available for grape (Vitis vinifera L.). The results described herein include a comparison of 12 different mathematical models for estimating leaf area in `Cencibel'. The simplest, most accurate regression equations were: LAi = 0.587 LW (R2 = 0.987) and LAi = 0.588 LW (R2 = 0.994), where LAi is leaf area measured using image analysis and LW is leaf length × maximum width. Use of maximum width (W), leaf length (L), petiole length (Lp), and dry weight of leaves (DML) as single variables in the regression equations were not as closely associated with total leaf area, although their R2 values were also highly significant.


1977 ◽  
Vol 89 (1) ◽  
pp. 35-42 ◽  
Author(s):  
M. A. Khalifa ◽  
M. H. Akasha ◽  
M. B. Said

SummaryField experiments were made under irrigated semi-arid conditions to determine the effects of sowing date and nitrogen application on the growth and yield of wheat and nitrogen-uptake by wheat plants. Early sowing was found to be favourable to high grain production because the post-anthesis period coincided with relatively lower temperatures. Late sowing was unfavourable to grain yields since the period between anthesis and leaf senescence was curtailed by the onset of relatively higher temperature. The benefits from nitrogen were greater with early sowing because of higher nitrogen-uptake during early vegetative growth as a consequence of which, nitrogen was readily available to the plants. This resulted in better leaf expansion, and higher leaf-area indices and leaf-area duration. With late sowing nitrogen-uptake was much lower during early vegetative growth and this resulted in decreased leaf expansion, reduced leaf-area indices and leaf-area duration and therefore diminished response in grain yield to nitrogen application.


Sign in / Sign up

Export Citation Format

Share Document