scholarly journals Satureja montana Essential Oil, Zein Nanoparticles and Their Combination as a Biocontrol Strategy to Reduce Bacterial Spot Disease on Tomato Plants

Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 584
Author(s):  
Paulo R. Oliveira-Pinto ◽  
Nuno Mariz-Ponte ◽  
Rose Marie O. F. Sousa ◽  
Ana Torres ◽  
Fernando Tavares ◽  
...  

Tomato bacterial spot (Bs), caused by Xanthomonas spp., including X. euvesicatoria (Xeu) remains a major threat for tomato production. The emergence of copper resistance strains of Xeu calls urgently for eco-friendly phytosanitary treatments as sustainable green alternatives for disease control. Satureja spp. essential oil (EO) has antimicrobial activity against xanthomonads and combined with zein nanoparticles (ZNPs), might offer a viable option for field applications. This study aims to evaluate the effects of S. montana EO, of ZNPs, and their combination in a nanoformulation, on Xeu quantity, and how these compounds modulate molecular and physiological changes in the pathosystem. Uninfected and infected tomato plants (var. Oxheart) were treated with EO; ZNPs and nanoformulation (EO + ZNPs). Treatments reduced Xeu amount by a minimum of 1.6-fold (EO) and a maximum of 202-fold (ZNPs) and improved plants’ health. Nanoformulation and ZNPs increased plants’ phenolic content. ZNPs significantly increased GPX activity and reduced CAT activity. Overall treatments upregulated transcripts of the phenylpropanoid pathway in infected plants, while ZNPs and nanoformulation upregulated those transcripts in uninfected plants. Both sod and aao transcripts were downregulated by treatments in infected plants. These findings demonstrate that S. montana EO, ZNPs and their nanoformulation are suitable to integrate tomato bacterial spot management strategies, mainly due to their antimicrobial activity on Xeu, however further field studies clarifying the long-term action of these products are required. These results also support the prophylactic potential of ZNPs on tomato bacterial spot.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10913
Author(s):  
Jared Hernández-Huerta ◽  
Patricia Tamez-Guerra ◽  
Ricardo Gomez-Flores ◽  
Ma. Carmen E. Delgado-Gardea ◽  
Margarita S. García-Madrid ◽  
...  

Background Xanthomonas spp. causes bacterial spot disease, which reduces quality and yield of pepper crops in Mexico. Identification of phytopathogen species is necessary to implement more effective control strategies. Objective The aim of this study was to isolate and identify infecting Xanthomonas species in South Central Chihuahua pepper-producing areas. Methods Diseased plants were collected from 30 cultivation lots and bacteria were isolated from damaged tissues. Potential causative agents were isolated, identified, and characterized by biochemical and molecular analysis. Pathogenicity tests from each isolate were then performed on 30-d-old pepper seedlings, exposing five leaves to 10 µL of 1 × 108 CFU/mL bacterial suspensions of each isolate, using sterile distilled water as a control. Disease severity was determined after 10 d by calculating leaf damage percentage. Furthermore, we evaluated the susceptibility of the highest bacterial spot severity-causing isolates (13 isolates) to copper sulphate (CuS), copper gluconate (CuG), copper oxychloride + oxytetracycline hydrochloride (Cu + Ox), gentamicin + oxytetracycline hydrochloride (Gen + Ox), and gentamicin sulphate (GenS). Copper-resistance genes (copLAB) were detected by PCR analysis among isolates. Results Thirty-seven foliage isolates were identified as Xanthomonas euvesicatoria (14%), which were associated with bacterial spot disease in jalapeño pepper. Tested Xanthomonas isolates were resistant to Cu-based compounds, but susceptible to Cu + Ox. All isolates were susceptible to Gen + Ox and GenS. CopLAB genes were detected in all but one strain. Conclusions X. euvesicatoria (formally X. perforans) may be considered as an emerging pathogen of bacterial spot pepper in Mexico. Among disease management strategies, alternatives to copper should be taken into consideration.


2015 ◽  
Vol 61 (10) ◽  
pp. 753-761 ◽  
Author(s):  
Pervaiz A. Abbasi ◽  
Salah Eddin Khabbaz ◽  
Brian Weselowski ◽  
Liang Zhang

Field strains of tomato bacterial spot pathogen (Xanthomonas euvesicatoria, X. vesicatoria, X. perforans, and X. gardneri) were characterized for sensitivity to copper and species composition. A total of 98 strains were isolated from symptomatic leaf and fruit samples collected from 18 tomato fields in Ontario. In greenhouse pathogenicity tests, most of the field strains caused severe (37 strains) to highly severe (23 strains) symptoms on ‘Bonny Best’ tomato plants, whereas 38 strains caused moderate symptoms. In MGY agar plates amended with various concentrations of copper sulfate, 11 strains were completely sensitive (no growth) and 87 strains were resistant (grew on 1.0 mmol/L or higher copper concentration). PCR analysis of the hrp gene cluster followed by restriction digestion with HaeIII and sequencing identified X. gardneri (35 strains) and X. perforans (26 strains) as predominant species and X. euvesicatoria and X. vesicatoria as less common species in Ontario tomato fields. Separation of field strains into various species was also confirmed with starch hydrolysis activity on agar medium. Moreover, 72 field strains produced shiny greenish-yellow colonies surrounded by a milky zone on xanthomonad differential (Xan-D) medium, and the colonies of 26 strains did not produce a milky zone. Thirty-four strains could not be clustered into any species and 25 of those strains were negative for the hrp gene PCR and also did not produce a milky zone around colonies on Xan-D medium. Our results suggest a widespread existence of copper-resistant strains and an increase in X. perforans strains of bacterial spot pathogen in Ontario. This information on copper resistance and species composition within bacterial spot pathogens in Ontario will be helpful for developing effective disease management strategies, making cultivar selection, and breeding new tomato cultivars.


HortScience ◽  
2012 ◽  
Vol 47 (5) ◽  
pp. 621-625 ◽  
Author(s):  
Theodore McAvoy ◽  
Joshua H. Freeman ◽  
Steven L. Rideout ◽  
Stephen M. Olson ◽  
Mathews L. Paret

Seven hybrid tomato rootstocks with possible resistance to bacterial wilt caused by Ralstonia solanacearum and a known resistant cultivar were tested as grafting rootstocks to impart resistance to a bacterial wilt-susceptible cultivar, BHN 602. Greenhouse studies showed resistance of all the rootstocks to bacterial wilt. The disease incidence and yield of ‘BHN 602’ grafted to these rootstocks were evaluated in open-field tomato production in Florida and Virginia over four seasons. Significant differences in bacterial wilt incidence were observed between grafted entries in three of the four trials. In these three trials, grafted entries consistently exhibited the least bacterial wilt incidence compared with the controls; the self-graft, and non-grafted entries. Over all the trials, tomato plants grafted onto ‘Cheong Gang’, ‘BHN 1054’, and ‘BHN 998’ displayed the least bacterial wilt incidence. Rootstocks had a significant effect on total marketable yield in all the trials with certain grafted entries yielding significantly greater than non-grafted ‘BHN 602’. Field studies show that grafting holds promise for decreasing the impact of bacterial wilt on tomato cultivars as well as increasing the overall productivity of tomato cultivars.


2018 ◽  
Vol 108 (2) ◽  
pp. 196-205 ◽  
Author(s):  
A. Strayer-Scherer ◽  
Y. Y. Liao ◽  
M. Young ◽  
L. Ritchie ◽  
G. E. Vallad ◽  
...  

Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P < 0.05). All copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P < 0.05). Although there was no significant impact on yield, copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P < 0.05). This study highlights the discovery that copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.


2019 ◽  
Vol 8 (2) ◽  
pp. 53-61 ◽  
Author(s):  
Hadeel M. M. Khalil Bagy ◽  
Kamal A. M. Abo-Elyousr

Bacterial spot disease caused by Xanthomonas axonopodis pv. vesicatoria is considered one of the major diseases of tomato crop worldwide. The objective of this paper was to study the effect of certain essential oils (EOs), lemongrass, oleum and thyme, on X. axonopodis pv. vesicatoria (PHYX14) for controlling bacterial spot disease in tomato plants. The tested three essential oils (EOs) showed antibacterial activity in vitro test at 1:10 concentration against the PHYX14.Thyme oil exhibited the highest inhibition against PHYX14 followed by lemongrass and finally oleum. Under greenhouse conditions, the effect of EOs on the bacterial spot of tomato was evaluated on tomato seedlings. Thyme oil exhibited the highest reducing of tomato bacterial spot followed oleum and then lemongrass. Results indicated that the application of the tested (EOs) to tomato plants two days after the infection caused the highest reduction of disease severity. While the application of oleum oil exhibited the highest induction of the oxidative enzymes, peroxidase (PO) and polyphenol enzyme (PPO). Also increased total phenolic contents of tomato leaves followed lemongrass and then thyme oil as compared by control. The application of EOs two days before the infection caused the highest induction of PO, PPO enzymes and total phenolic contents in tomato leaves than two days after the inoculation.


2010 ◽  
Vol 20 (5) ◽  
pp. 847-851 ◽  
Author(s):  
Gary E. Vallad ◽  
Bielinski M. Santos

Field studies were conducted in Florida to determine the effect of early shoot pruning on the severity of bacterial spot, and on the growth and yield of different tomato (Solanum lycopersicum) cultivars. Two tomato cultivars, two inoculation regimes of bacterial spot pathogen (Xanthomonas perforans), and three shoot pruning programs were arranged in a split-split plot design. The tomato cultivars were Tygress and Security-28; shoot pruning included none, light, and heavy; and X. perforans treatments consisted of non-inoculated plots and plots inoculated with a suspension of the pathogen. Tomato plant height was not influenced by any of the three factors or their interactions, whereas the disease severity was higher in inoculated plots versus non-inoculated plants. Early extra-large fruit weight was affected by tomato cultivars and the inoculation with the bacterial spot pathogen, but not by pruning programs or the interaction among factors. Tomato plants inoculated with X. perforans reduced their extra-large fruit weight by 31% in comparison with non-inoculated plants. There were no differences on early marketable fruit weight among the combinations of each cultivar and the three pruning programs. All three factors individually influenced the seasonal marketable fruit weight of tomato, with no difference between light-pruned plants and the non-pruned control for seasonal marketable fruit weight, regardless of tomato cultivars. However, heavy pruning did reduce seasonal yields by 10% in comparison with the non-pruned control. These results indicated that light shoot pruning, which is the standard grower practice in Florida, did not improve bacterial spot control or tomato yields of total and extra-large marketable fruit, which might save up to $50/acre in reduced labor costs for Florida tomato growers.


2014 ◽  
Vol 80 (13) ◽  
pp. 3842-3849 ◽  
Author(s):  
Sarah Allard ◽  
Alexander Enurah ◽  
Errol Strain ◽  
Patricia Millner ◽  
Steven L. Rideout ◽  
...  

ABSTRACTRecently, tomatoes have been implicated as a primary vehicle in food-borne outbreaks ofSalmonella entericaserovar Newport and otherSalmonellaserovars. Long-term intervention measures to reduceSalmonellaprevalence on tomatoes remain elusive for growing and postharvest environments. A naturally occurring bacterium identified by 16S rRNA gene sequencing asPaenibacillus alveiwas isolated epiphytically from plants native to the Virginia Eastern Shore tomato-growing region. After initial antimicrobial activity screening againstSalmonellaand 10 other bacterial pathogens associated with the human food supply, strain TS-15 was further used to challenge an attenuated strain ofS. Newport on inoculated fruits, leaves, and blossoms of tomato plants in an insect-screened high tunnel with a split-plot design. Survival ofSalmonellaafter inoculation was measured for groups with and those without the antagonist at days 0, 1, 2, and 3 and either day 5 for blossoms or day 6 for fruits and leaves. Strain TS-15 exhibited broad-range antimicrobial activity against both major food-borne pathogens and major bacterial phytopathogens of tomato. AfterP. alveistrain TS-15 was applied onto the fruits, leaves, and blossoms of tomato plants, the concentration ofS. Newport declined significantly (P≤ 0.05) compared with controls. Astonishingly, >90% of the plants had no detectable levels ofSalmonellaby day 5 for blossoms. The naturally occurring antagonist strain TS-15 is highly effective in reducing the carriage ofSalmonellaNewport on whole tomato plants. The application ofP. alveistrain TS-15 is a promising approach for reducing the risk ofSalmonellacontamination during tomato production.


Author(s):  
Yi-Ru Lai ◽  
Chih-Hung Lin ◽  
Chun-Pi Chang ◽  
Hui-Fang Ni ◽  
Wen-Shi Tsai ◽  
...  

In Taiwan, numerous crops are threatened by Xanthomonas diseases such as citrus bacterial canker caused by X. citri subsp. citri and tomato bacterial spot mainly caused by X. euvesicatoria pv. perforans. Foliar sprays of copper-based bactericides have been frequently used for control of plant bacterial diseases. However, in Taiwan not much attention was paid on copper-resistant (Cu<sup>R</sup>) Xanthomonas spp. and their impact on disease control efficacy of copper-based bactericides. In this study, Cu<sup>R</sup> Xanthomonas isolates were collected from citrus and tomato in Taiwan. Compared with the pronounced effect on the copper sensitive isolate, spraying of copper hydroxide at the recommended rate of 0.5 kg/ha could not protect tomato plants against bacterial spot caused by the Cu<sup>R</sup> isolate. Phylogenetic analysis of concatenated copper resistance genes, copL, copA, and copB, indicate that the Taiwanese Cu<sup>R</sup> isolates belong to the worldwide clade. In addition to the three previously reported variants of the copB gene, analysis of complete copB sequences from xanthomonads associated with citrus and solanaceous hosts revealed the other three variants of copB and their global distribution. Copper-resistant Xanthomonas isolates from Taiwan have the two unreported variants of copB genes which differ from the other three previously reported types in the sizes and structures. The information provided here reveals the necessity to develop and include alternative measures rather than relying on foliar sprays of copper bactericides for sustainable control of tomato bacterial spot in Taiwan.


2018 ◽  
Vol 73 (7-8) ◽  
pp. 257-264
Author(s):  
Yoana Kizheva ◽  
Zoltan Urshev ◽  
Iliana Rasheva ◽  
Taca Vancheva ◽  
Petya Hristova ◽  
...  

Abstract Pulsed-field gel electrophoresis (PFGE) is a highly discriminative molecular typing method that is used for epidemiological studies and investigation of outbreaks caused by different pathogens, including phytopathogenic Xanthomonas species. Bacterial spot (BS) is the most common and one of the most destructive diseases of tomato and pepper plants in Bulgaria. Several Xanthomonas species are known to cause BS, but the global distribution and genetic diversity of these species are not well understood. A collection of 100 BS-causing strains, isolated during the period of 1985–2012 from different tomato cultivars and weeds associated with tomato production areas from 11 geographic regions in Bulgaria, were screened for genetic diversity by genomic DNA restriction with rare-cutting endonucleases (XbaI and SpeI) subsequently resolved by PFGE. Two haplotypes for Xanthomonas vesicatoria and one haplotype for Xanthomonas gardneri strains were found.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
SN Ebrahimi ◽  
M Yousefzadi ◽  
A Sonboli ◽  
F Miraghasi ◽  
S Ghiasi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document