scholarly journals Effectiveness of Chemical and Thermal Treatments on Control Rhizopus Stolonifer Fruit Infection Comparing Tomato Cultivars with Different Sensitivities to Cracking

Author(s):  
Alfaro-Sifuentes ◽  
Juan ◽  
Meca ◽  
Elorrieta ◽  
Valenzuela

Tomatoes are among the most important horticultural crops; however, it is estimated that 30% of tomato yield is lost due to postharvest rot due to Rhizopus stolonifer, a fungus which requires lesions to initiate the infectious process. Tomato fruit cracking is a physiopathy which causes significant economic losses, since cracking is the door used by the fungus. In this experiment, 14 cultivars of tomato of different types were used. Fruit sampling was carried out in the middle of the crop cycle, coinciding with the peak of yield; then, the fruits were divided into two groups: one group was inoculated with Rhizopus in order to assess the effectiveness of washing, whilst the other was treated with sterile water. The fruits of each group were divided into lots to be treated with six washing treatments: dipping in hot water at 20, 40 and 60 °C for 20 s; the fruits were then sprayed with the following solutions: 0.6% of Hydrogen Peroxide 23% + Peracetic acid 15%; commercial bleach at 0.5% and 2% of Hydrogen Peroxide 50%. The control sample was not washed. The results show that there was an influence of cultivar on fruit cracking, which was strongly related with Rhizopus infection. Three cultivars were not susceptible to cracking, and therefore, were not sensitive to Rhizopus infection. The effectiveness of different washing treatments of tomato fruits depends on several factors; nonetheless, hot water treatment has been shown to be more effective than the use of chemical products such as commercial bleach or hydrogen peroxide. Another factor, the susceptibility of cultivars to cracking, determines the effectiveness of the washing treatment. The results provide an important basis for making decisions about the washing management of tomato fruits in packaging houses.

Author(s):  
Mohamed S. AL-Saikhan ◽  
Tarek A. Shalaby

Tomato is a perishable vegetable crop and it faces several problems during marketing and storage. Postharvest losses during storage of tomato fruits are mainly due to decay. In this study, the effect of postharvest application of hydrogen peroxide on quality and decay of tomato fruits during storage under two storage temperatures (10 ºC and 20 ºC) was studied. Tomato fruits (Red rose cv.) at light red maturity stage were dipped in a solution of hydrogen peroxide (0, 5 and 15 mM) for 30 min, then air-dried at room temperature and stored at room temperature (20ºC) for three weeks in fridge (10ºC) for 4 weeks. A factorial (3 x 2) complete randomized design with three replications was used. The results showed that Hydrogen peroxide treatments reduced weight loss and disease incidence percentage of fruits compared with control treatment (0 mM hydrogen peroxide). Moreover, hydrogen peroxide treatments had slight effect on fruit firmness. Regarding TSS% and ascorbic acid content, there were no significant differences among treatments. In addition, storage temperature affected tomato fruit quality during storage time. Therefore, the use of hydrogen peroxide in postharvest treatments is useful to keep quality of tomato fruits under storage conditions.


Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 522
Author(s):  
Jinyu Wang ◽  
Yan Feng ◽  
Xiaotao Ding ◽  
Jingtian Huo ◽  
Wen-Feng Nie

As emerging essential regulators in plant development, long non-coding RNAs (lncRNAs) have been extensively investigated in multiple horticultural crops, as well as in different tissues of plants. Tomato fruits are an indispensable part of people’s diet and are consumed as fruits and vegetables. Meanwhile, tomato is widely used as a model to study the ripening mechanism in fleshy fruit. Although increasing evidence shows that lncRNAs are involved in lots of biological processes in tomato plants, the comprehensive identification of lncRNAs in tomato fruit during its expansion and ripening and their functions are partially known. Here, we performed strand-specific paired-end RNA sequencing (ssRNA-seq) of tomato Heinz1706 fruits at five different developmental stages, as well as flowers and leaves. We identified 17,674 putative lncRNAs by referencing the recently released SL4.0 and annotation ITAG4.0 in tomato plants. Many lncRNAs show different expression patterns in fleshy fruit at different developmental stages compared with leaves or flowers. Our results indicate that lncRNAs play an important role in the regulation of tomato fruit expansion and ripening, providing informative lncRNA candidates for further studies in tomato fruits. In addition, we also summarize the recent advanced progress in lncRNAs mediated regulation on horticultural fruits. Hence, our study updates the understanding of lncRNAs in horticultural plants and provides resources for future studies relating to the expansion and ripening of tomato fruits.


2017 ◽  
Vol 4 (1) ◽  
pp. 36-47
Author(s):  
R. Osae G. Essilfie J. O. Anim

The study was conducted to assess the effect of different waxing materials on the quality attributes of tomato fruits. A 2 x8 factorial experiment layout in complete randomized design with 16 treatment combinations and 3 replication was adopted.The materials that were used for the experiment are two (2) varieties of tomatoes (Pectomech and Power Rano) and seven(7) waxing material (shea butter, cassava starch, beeswax, and a combination of shea butter + cassava starch, shea butter + beeswax, cassava starch + beeswax, shea butter + cassava starch + beeswax) and a control. Results from the experiment indicated that all waxing treatments delayed the development of weight loss, firmness, pH, total soluble solids, and total titrable acidity. The results also suggested that edible wax coatings delayed the ripening process and colour development of tomato fruits during the storage period and extended the shelf life. However Beewax treatment and its combinations performed better than the other treatments. It was therefore recommended that locally produced wax such as Beewax, Shea butter, Cassava Starch treatments and their combinations could be a good technology for preserving the quality and extending the shelf life of fresh tomato fruit as well as maintaining the physical and chemical properties.


2012 ◽  
Vol 102 (7) ◽  
pp. 652-655 ◽  
Author(s):  
K. L. Everts ◽  
L. Osborne ◽  
A. J. Gevens ◽  
S. J. Vasquez ◽  
B. K. Gugino ◽  
...  

Extension plant pathologists deliver science-based information that protects the economic value of agricultural and horticultural crops in the United States by educating growers and the general public about plant diseases. Extension plant pathologists diagnose plant diseases and disorders, provide advice, and conduct applied research on local and regional plant disease problems. During the last century, extension plant pathology programs have adjusted to demographic shifts in the U.S. population and to changes in program funding. Extension programs are now more collaborative and more specialized in response to a highly educated clientele. Changes in federal and state budgets and policies have also reduced funding and shifted the source of funding of extension plant pathologists from formula funds towards specialized competitive grants. These competitive grants often favor national over local and regional plant disease issues and typically require a long lead time to secure funding. These changes coupled with a reduction in personnel pose a threat to extension plant pathology programs. Increasing demand for high-quality, unbiased information and the continued reduction in local, state, and federal funds is unsustainable and, if not abated, will lead to a delay in response to emerging diseases, reduce crop yields, increase economic losses, and place U.S. agriculture at a global competitive disadvantage. In this letter, we outline four recommendations to strengthen the role and resources of extension plant pathologists as they guide our nation's food, feed, fuel, fiber, and ornamental producers into an era of increasing technological complexity and global competitiveness.


Author(s):  
Hazel Cooley ◽  
Mario Vallejo-Marín

Abstract Buzz-pollinated plants require visitation from vibration producing bee species to elicit full pollen release. Several important food crops are buzz-pollinated including tomato, eggplant, kiwi, and blueberry. Although more than half of all bee species can buzz pollinate, the most commonly deployed supplemental pollinator, Apis mellifera L. (Hymenoptera: Apidae; honey bees), cannot produce vibrations to remove pollen. Here, we provide a list of buzz-pollinated food crops and discuss the extent to which they rely on pollination by vibration-producing bees. We then use the most commonly cultivated of these crops, the tomato, Solanum lycopersicum L. (Solanales: Solanaceae), as a case study to investigate the effect of different pollination treatments on aspects of fruit quality. Following a systematic review of the literature, we statistically analyzed 71 experiments from 24 studies across different geopolitical regions and conducted a meta-analysis on a subset of 21 of these experiments. Our results show that both supplemental pollination by buzz-pollinating bees and open pollination by assemblages of bees, which include buzz pollinators, significantly increase tomato fruit weight compared to a no-pollination control. In contrast, auxin treatment, artificial mechanical vibrations, or supplemental pollination by non-buzz-pollinating bees (including Apis spp.), do not significantly increase fruit weight. Finally, we compare strategies for providing bee pollination in tomato cultivation around the globe and highlight how using buzz-pollinating bees might improve tomato yield, particularly in some geographic regions. We conclude that employing native, wild buzz pollinators can deliver important economic benefits with reduced environmental risks and increased advantages for both developed and emerging economies.


1964 ◽  
Vol 17 (1) ◽  
pp. 147 ◽  
Author(s):  
TL Lewis ◽  
M Workman

Exposure to O�C for 4 weeks caused a threefold increase in cell membrnno permeability of mature-green tomato fruits (susceptible to chilling injury) hut had no effect on that of cabbage leaves (not susceptible). While tomato fruits chilled for 12 days lost two-thirds of their capacity to esterify phosphate at 20�0, a steady rise in this capacity occurred during chilling of cabbage leaves for 5 weeks. In tomato fruits the rate of phosphate esterification at the chilling temperature fell in 12 days to about one-half of the rate at the commencement of chilling .. It is suggested that the characteristic symptoms of chilling injury in mature-green tomato fruits, viz. increased susceptibility to fungal attack and loss of the capacity to ripen normally. may result from an energy deficit caused by a chilling. induced reduction in the phosphorylative capacity of the tissue.


2019 ◽  
Vol 10 ◽  
Author(s):  
Stefan Petrasch ◽  
Christian J. Silva ◽  
Saskia D. Mesquida-Pesci ◽  
Karina Gallegos ◽  
Casper van den Abeele ◽  
...  

2021 ◽  
Vol 39 ◽  
Author(s):  
Pablo Preciado-Rangel ◽  
Luis Guillermo Hernández-Montiel ◽  
Ricardo David Valdez-Cepeda ◽  
Efraín De la Cruz-Lázaro ◽  
Liliana Lara-Capistrán ◽  
...  

The objective of biofortification is the human consumption of high nutritional quality food, rich in micronutrients. Selenium (Se) is an essential micronutrient in human nutrition, and its essentiality has not been evidenced in plants. However, its application in crops and subsequent consumption can mitigate the deficiency of this micronutrient in the diet of human populations. This work analyzes the capacity of sodium selenite (Na2SeO3) to increase yield, biosynthesis of bioactive compounds and their accumulation in tomato fruits. For this, five treatments were applied via nutrient solution: 0, 2, 4, 6, and 8 mg L-1. At harvest, the nutraceutical quality and the accumulation of Se in fruits were quantified, as well as the productivity of tomato plant. Biofortification was positively affected by the biosynthesis of phytochemical compounds and their concentration in fruit, although tomato yield decreased. The incorporation of Se in nutritive solution is an alternative to increase both the biosynthesis of phytochemical compounds and the concentration of this element in tomato fruits with the possibility of improving public health through its consumption.


2021 ◽  
Vol 8 ◽  
Author(s):  
Katy Vaillancourt ◽  
Michel Frenette ◽  
Marcelo Gottschalk ◽  
Daniel Grenier

Actinobacillus pleuropneumoniae is the causal agent of porcine pleuropneumonia, a highly contagious and often deadly respiratory disease that causes major economic losses in the swine industry worldwide. The aim of the present study was to investigate the hydrogen peroxide (H2O2)-dependent antagonistic activity of Streptococcus pluranimalium 2N12 (pig nasal isolate) against A. pleuropneumoniae. A fluorimetric assay showed that S. pluranimalium produces H2O2 dose- and time-dependently. The production of H2O2 increased in the presence of exogenous lactate, suggesting the involvement of lactate oxidase. All 20 strains of A. pleuropneumoniae tested, belonging to 18 different serovars, were susceptible to H2O2, with minimal inhibitory concentrations and minimal bactericidal concentrations ranging from 0.57 to 2.3 mM. H2O2, as well as a culture supernatant of S. pluranimalium, killed planktonic cells of A. pleuropneumoniae. Treating the culture supernatant with catalase abolished its bactericidal property. H2O2 was also active against a pre-formed biofilm-like structure of A. pleuropneumoniae albeit to a lesser extent. A checkerboard assay was used to show that there were antibacterial synergistic interactions between H2O2 and conventional antibiotics, more particularly ceftiofur. Based on our results and within the limitations of this in vitro study, the production of H2O2 by S. pluranimalium could be regarded as a potential protective mechanism of the upper respiratory tract against H2O2-sensitive pathogens such as A. pleuropneumoniae.


Author(s):  
Fufa Desta Dugassa

Tomato (Solanum Lycopersicum L. (or) Lycopersicon esculentum Mill.) is being a very nutritious and health protective food, are highly perishable nature. Its sensitivity to postharvest loss due to poor handling, diseases and physical injury limits its successful marketing. Therefore, simple technology is required to reduce the postharvest loss of this commodity. The use of edible coatings with bio-extracts appears to be a good alternative preservation technique to extend the mature tomato fruits. This study was, therefore, initiated to investigate the effect of using bio- extracts garlic bulba and capsicum incorporation with coating materials (maize starch and beeswax on physicochemical quality of tomato fruit stored at ambient conditions (temperature 15.5 to 20.2oC and relative humidity of 55.5 to 67.3%). The experiment was conducted using complete randomized design of two varieties (Fetane and Melkashola) and six treatments. The tomato fruits were coated by dipping into solution for 3 minutes. The treatments prepared were on coating solution of MGE( 9.5% maize starch with 0.5% garlic extract), MCE (9.5% maize starch with 0.5% capsicum extract), BCE (9.5% beewax mixed with 0.5% capsicum extract), BGE (9.5% beewax mixed with 0.5% garlic extract), 10% maize starch without bio-extract, 10% beewax without bio- extract and control. The treatment means were tested at significance level of P ≤ 0.05. The effectiveness of bio-extracts with coating materials on physicochemical quality of tomato fruits were evaluated at three days intervals for 30 days. There was a significance difference (P<0.05) between coated and uncoated fruits. All coatings delayed tomato ripening and improved the keeping quality parameters but best results were exhibited by 9.5% with 0.5% BCE followed by 9.5% with 0.5% MGE by maintaining the mature tomato fruit for 30 days. The study showed that the Fetane variety has maintained more quality attribute than Melkashola variety during storage.


Sign in / Sign up

Export Citation Format

Share Document