scholarly journals Biofortification with selenium increases bioactive compounds and antioxidant capacity in tomato fruits

2021 ◽  
Vol 39 ◽  
Author(s):  
Pablo Preciado-Rangel ◽  
Luis Guillermo Hernández-Montiel ◽  
Ricardo David Valdez-Cepeda ◽  
Efraín De la Cruz-Lázaro ◽  
Liliana Lara-Capistrán ◽  
...  

The objective of biofortification is the human consumption of high nutritional quality food, rich in micronutrients. Selenium (Se) is an essential micronutrient in human nutrition, and its essentiality has not been evidenced in plants. However, its application in crops and subsequent consumption can mitigate the deficiency of this micronutrient in the diet of human populations. This work analyzes the capacity of sodium selenite (Na2SeO3) to increase yield, biosynthesis of bioactive compounds and their accumulation in tomato fruits. For this, five treatments were applied via nutrient solution: 0, 2, 4, 6, and 8 mg L-1. At harvest, the nutraceutical quality and the accumulation of Se in fruits were quantified, as well as the productivity of tomato plant. Biofortification was positively affected by the biosynthesis of phytochemical compounds and their concentration in fruit, although tomato yield decreased. The incorporation of Se in nutritive solution is an alternative to increase both the biosynthesis of phytochemical compounds and the concentration of this element in tomato fruits with the possibility of improving public health through its consumption.

Agriculture ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 486
Author(s):  
Foroughbakhch Pournavab Rahim ◽  
Castillo Godina Rocio ◽  
Benavides Mendoza Adalberto ◽  
Salas Cruz Lidia Rosaura ◽  
Ngangyo Heya Maginot

Biofortification aims to increase the concentration of bioavailable elements in crops, to increase their nutritional quality. Selenium is a trace element of great impact on the antioxidant metabolism of plants and its accumulation is poor in species such as Solanum lycopersicon, so adding it is part of biofortification programs. The present work analyzes the capacity of sodium selenite (Na2SeO3) to increase the concentration of Selenium in tomatoes plants and fruits. For this, three treatments were applied (0, 2, and 5 mg L−1 of sodium selenite) using irrigation water as a vehicle. 40 days after transplanting, the accumulation of selenium and macronutrients in leaves, stems, and fruits was quantified, as well as their impact on tomato plant productivity. Agronomic variables such as height (cm), diameter (mm) of stems, number and weight (g) of fruits produced were determined. The results were analyzed by ANOVA and later, a Tukey mean comparison test was performed. An increase in the accumulation of Se was observed, being up to 53% in the fruits under the 5 mg L−1 treatment compared to the control. However, this increase did not have a noticeable impact on macronutrient content and tomato yield, but rather, contributed to the improvement of the nutritional quality of the tomato.


2021 ◽  
Vol 15 (3) ◽  
pp. 1
Author(s):  
Alejandro De Jesús Cortés-Sánchez

Fish and products are considered a food of nutritional quality that constituents a part of the human diet, produced and commercialized worldwide. Tilapia is one of the main fish for aquaculture production destined for human consumption in different presentations: refrigerated, frozen, fillet, cured, canned, among others. Fish, in addition to being a highly nutritious food, is also sensitive to deterioration and contamination along the food chain, being able to be contaminated mainly by microorganisms that are casual agents of consumer illnesses. Clostridium botulinum and spores can contaminate foods such as fish and products whose germination, growth and generation of botulinum toxin puts the health of consumers at high risk of acquiring botulism disease, which is of importance in public health due to its incidence and high fatality rate. This review describes in a general way the aspects related to fish and tilapia, foodborne diseases such as botulism, the causal agent, in addition to sanitary regulation, control and prevention of contamination of food products to protect food safety, and consumer’s health.


2019 ◽  
Vol 18 (2) ◽  
pp. 152-157
Author(s):  
Zeng Xianlu ◽  
Han Fei ◽  
Zhong Yanmei

In order to harvest selenium-enriched fruiting body and spores of Ganoderma lingzhi and spent medium, G. lingzhi was cultivated in kudzu vine as substrate and the bio-transformation of selenite was evaluated. The growth medium consisted of Kudzu vine supplemented with 20% wheat bran or sawdust or none. The growth medium was supplemented with 0, 10, 20, 30, and 50 mg/kg of sodium selenite. We found a significant difference in spawn run speed, fruiting body and spore yields when Kudzu vine was supplemented with wheat bran or sawdust. However, when whole-kudzu vine was used alone as substrate, it resulted in a significantly lower spawn run speed, fruiting body, and spore yields compared with kudzu vine + sawdust substrate and kudzu vine + wheat bran substrate. The selenium content in fruiting body and spores increased with increasing sodium selenite supplementation and approximately equaled half of the selenium in the substrate. No selenite was detected in both the fruiting body and spores. However, in the spent medium when sodium selenite was supplemented at 10, 20, 30, 50 mg/kg, the residual selenite concentration decreased to 0.45, 0.72, 1.29, and 1.95 mg/kg, respectively, suggesting a higher selenite transformation (92.27–93.57%). In conclusion, if Ganoderma fruiting body and spores were to be harvested for human consumption, approximately 50 mg/kg selenite should be added to the growth substrate. On the other hand, if the spent medium was to be used as an organic selenium source, the optimal sodium selenite supplementation level would be 10 mg/kg.


1995 ◽  
Vol 32 (11) ◽  
pp. 145-152 ◽  
Author(s):  
M. El-S. Easa ◽  
M. M. Shereif ◽  
A. I. Shaaban ◽  
K. H. Mancy

Public health and safety concerns have traditionally been the main reasons for resisting waste water reuse for fish farming. Potential adverse health effects in such applications could be avoided if the waste is sufficiently treated before reuse. In a full scale demonstration study in Suez, Egypt, about 400 m3/d of raw sewage were treated using a multi-compartment stabilization pond system, for a total residence time from 21-26 days. The treated effluent conformed to WHO guidelines and was used for rearing two types of local fish (tilapia and gray mullet). The produced fish were subjected to an extensive monitoring program. Bacteriological examination revealed that in all samples the fish muscles were free of bacterial contaminants. Nevertheless, low levels of Escherichia coli andAeromonas hydrophila, were isolated from the surface of the fish. Salmonellae, shigellae and staphylococcus aureus were absent from the surface of all the fish sampled. In addition, toxic metals (Pb, Cu, Zn, and Cd) were found to be at much lower levels than the international advisory limits for human consumption. It is concluded that fish reared in the treated effluent at Suez Experimental Station is (a) suitable for marketing for human consumption, and (b) it's quality is equal or better than fresh water fish in Egypt.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Trishala Gopikrishna ◽  
Harini Keerthana Suresh Kumar ◽  
Kumar Perumal ◽  
Elavarashi Elangovan

Abstract Purpose Fermented soybean foods (FSF) is popularly consumed in the South-East Asian countries. Bacillus species, a predominant microorganism present in these foods, have demonstrated beneficial and deleterious impacts on human health. These microorganisms produce bioactive compounds during fermentation that have beneficial impacts in improving human health. However, the health risks associated with FSF, food pathogens, biogenic amines (BAs) production, and late-onset anaphylaxis, remain a concern. The purpose of this review is to present an in-depth analysis of positive and negative impacts as a result of consumption of FSF along with the measures to alleviate health risks for human consumption. Methods This review was composed by scrutinizing contemporary literature of peer-reviewed publications related to Bacillus and FSF. Based on the results from academic journals, this review paper was categorized into FSF, role of Bacillus species in these foods, process of fermentation, beneficial, and adverse influence of these foods along with methods to improve food safety. Special emphasis was given to the potential benefits of bioactive compounds released during fermentation of soybean by Bacillus species. Results The nutritional and functional properties of FSF are well-appreciated, due to the release of peptides and mucilage, which have shown health benefits: in managing cardiac disease, gastric disease, cancer, allergies, hepatic disease, obesity, immune disorders, and especially microbial infections due to the presence of probiotic property, which is a potential alternative to antibiotics. Efficient interventions were established to mitigate pitfalls like the techniques to reduce BAs and food pathogens and by using a defined starter culture to improve the safety and quality of these foods. Conclusion Despite some of the detrimental effects produced by these foods, potential health benefits have been observed. Therefore, soybean foods fermented by Bacillus can be a promising food by integrating effective measures for maintaining safety and quality for human consumption. Further, in vivo analysis on the activity and dietary interventions of bioactive compounds among animal models and human volunteers are yet to be achieved which is essential to commercialize them for safe consumption by humans, especially immunocompromised patients.


2021 ◽  
pp. 101878
Author(s):  
Md. Solaiman Hossain ◽  
Saad Al-din Sifat ◽  
M. Afzal Hossain ◽  
Sazlina Salleh ◽  
Mofazzal Hossain ◽  
...  

2007 ◽  
Vol 10 (7) ◽  
pp. 690-700 ◽  
Author(s):  
E Labouze ◽  
C Goffi ◽  
L Moulay ◽  
V Azaïs-Braesco

AbstractBackground/objectivesWith obesity and nutrition-related diseases rising, public health authorities have recently insisted nutritional quality be included when advertising and labelling food. The concept of nutritional quality is, however, difficult to define. In this paper we present an innovative, science-based nutrient profiling system, Nutrimap®, which quantifies nutritional assets and weaknesses of foods.MethodsThe position of a food is defined according to its nutritional composition, food category, the consumer's nutritional needs, consumption data and major public health objectives for nutrition. Amounts of each of 15 relevant nutrients (in 100 kcal) are scored according to their ability to ‘rebalance’ or ‘unbalance’ the supply in the whole diet, compared with current recommendations and intakes. These scores are weighted differently in different food categories according to the measured relevance of the category to a nutrient's supply. Positive (assets) and negative (weaknesses) scores are totalled separately.ResultsNutrimap®provides an overall estimate of the nutritional quality of same-category foods, enabling easy comparisons as exemplified for cereals and fruit/vegetables. Results are consistent with major nutritional recommendations and match classifications provided by other systems. Simulations for breakfasts show that Nutrimap®can help design meals of controlled nutritional value.ConclusionsCombining objective scientific bases with pragmatic concerns, Nutrimap®appears to be effective in comparing food items. Decision-makers can set their own limits within the Nutrimap®-defined assets and weaknesses of foods and reach categorisations consistent with their objectives – from regulatory purposes to consumer information or support for designing meals (catering) or new products (food industry).


Author(s):  
Rajesh Melaram ◽  

Microcystins (MCs) are blue-green algal toxins produced by freshwater cyanobacteria. Their environmentally relevant concentrations throughout global surface waters have tampered with human populations’ drinking and recreational supplies. MCs have gained immense public health attention due to their potential health effects. Microcystin-LR (MC-LR) is the most toxic variant of the MCs. Investigations on MC-LR toxicity and detection in water signify a growing potential environmental health concern worldwide. The World Health Organization established a provisional drinking water guidance value of 1 μg/L and a provisional recreational exposure guidance value of 10 μg/L for MC-LR. This review surveys human MC exposure pathways and integrates epidemiological studies to support MCs’ critical exposure pathways. A discussion on monitoring and mitigation strategies provides a guide for policy development in adopting MCs’ regulatory levels to protect public health.


Beverages ◽  
2017 ◽  
Vol 3 (4) ◽  
pp. 54 ◽  
Author(s):  
Francesca Melini ◽  
Valentina Melini ◽  
Francesca Luziatelli ◽  
Maurizio Ruzzi

Sign in / Sign up

Export Citation Format

Share Document