scholarly journals A Review on Recent Treatment Technology for Herbicide Atrazine in Contaminated Environment

Author(s):  
Huijun He ◽  
Yongpan Liu ◽  
Shaohong You ◽  
Jie Liu ◽  
He Xiao ◽  
...  

Atrazine is a kind of triazine herbicide that is widely used for weed control due to its good weeding effect and low price. The study of atrazine removal from the environment is of great significance due to the stable structure, difficult degradation, long residence time in environment, and toxicity on the organism and human beings. Therefore, a number of processing technologies are developed and widely employed for atrazine degradation, such as adsorption, photochemical catalysis, biodegradation, etc. In this article, with our previous research work, the progresses of researches about the treatment technology of atrazine are systematically reviewed, which includes the four main aspects of physicochemical, chemical, biological, and material-microbial-integrated aspects. The advantages and disadvantages of various methods are summarized and the degradation mechanisms are also evaluated. Specially, recent advanced technologies, both plant-microbial remediation and the material-microbial-integrated method, have been highlighted on atrazine degradation. Among them, the plant-microbial remediation is based on the combined system of soil-plant-microbes, and the material-microbial-integrated method is based on the synergistic effect of materials and microorganisms. Additionally, future research needs to focus on the excellent removal effect and low environmental impact of functional materials, and the coordination processing of two or more technologies for atrazine removal is also highlighted.

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2162
Author(s):  
Changqi Sun ◽  
Cong Zhang ◽  
Naixue Xiong

Infrared and visible image fusion technologies make full use of different image features obtained by different sensors, retain complementary information of the source images during the fusion process, and use redundant information to improve the credibility of the fusion image. In recent years, many researchers have used deep learning methods (DL) to explore the field of image fusion and found that applying DL has improved the time-consuming efficiency of the model and the fusion effect. However, DL includes many branches, and there is currently no detailed investigation of deep learning methods in image fusion. In this work, this survey reports on the development of image fusion algorithms based on deep learning in recent years. Specifically, this paper first conducts a detailed investigation on the fusion method of infrared and visible images based on deep learning, compares the existing fusion algorithms qualitatively and quantitatively with the existing fusion quality indicators, and discusses various fusions. The main contribution, advantages, and disadvantages of the algorithm. Finally, the research status of infrared and visible image fusion is summarized, and future work has prospected. This research can help us realize many image fusion methods in recent years and lay the foundation for future research work.


2014 ◽  
Vol 587-589 ◽  
pp. 816-819 ◽  
Author(s):  
Ning Chen ◽  
Su Chen ◽  
Lei Chao ◽  
Li Na Sun ◽  
Dong Mei Zheng ◽  
...  

In the recent years, antibiotics and heavy metals have become common pollutants in soil. Plant-microbial remediation is promising for the management of antibiotics and heavy metals pollution in soil. This paper talks about the mechanization of plant-microbial remediation, finds the advantages and disadvantages about plant-microbial technology, summarizes the method of selection of the plant and microbial, influential factors, and discusses the future research priorities of plant-microbial remediation.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Ammar M. A. Abu Znaid ◽  
Mohd. Yamani Idna Idris ◽  
Ainuddin Wahid Abdul Wahab ◽  
Liana Khamis Qabajeh ◽  
Omar Adil Mahdi

The advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages and disadvantages. The similarities and differences of each scheme are investigated on the basis of significant parameters, namely, localization accuracy, computational cost, communication cost, and number of samples. We discuss the challenges and direction of the future research work for each parameter.


2021 ◽  
Vol 233 ◽  
pp. 01037
Author(s):  
Xin Tang ◽  
Yuqin Ni

Heavy metal pollution in soil has seriously affected the living environment of human beings. Among all heavy metal pollution, cadmium (Cd) is one of the most difficult to migrate pollutants in soil. In China, more than 11 provinces and 25 regions are rich in cadmium in the soil. At present, many researchers are looking for a proper Cd pollution remediation method. Through literature review and comparative analysis, this study summarized the main repair methods, including physical repair (digging and filling, electro kinetic remediation, frozen soil remediation technology, stabilization technology), chemical curing technology (chemical healing technology, chemical extraction), bioremediation technology (Phytoremediation technology, microbial remediation technology, animal repair technology), and joint repair (Chelating agent phytoremediation, microbial remediation). Finally, we explored the principles of these methods and compared their advantages and disadvantages. It was found that the application and selection of different treatment technologies depended on Cd rich soil area, Cd pollutant content, treatment time and other factors. In the future, the remediation of soil cadmium pollution should be scientifically selected according to the local actual situation and pay attention to the joint application of various methods.


The exemplary properties of eggshell waste have gained a lot of attention due to its chemical composition and bio-degradable features making it a suitable choice to be used in wastewater treatment. The use of biosorption as an alternate treatment technology to conventional processes such as chemical precipitation and ion exchange is seen as a promising solution to the many drawbacks experienced by conventional processes. Furthermore, due to higher imposed environmental legislations, eco-friendly and low-cost considerations have set the momentum in the search for biosorbents of this nature. With the circular economy being the focal point of industrial operations, eggshell waste is a highly promising biosorbent due to its non-toxicity properties and its ability to be converted from a waste material to a valuable product. In this review paper, fundamental aspects of biosorption will be discussed where the main focus will lie in qualitatively examining the properties of eggshell waste, binding mechanisms, kinetics and isotherm modelling that make it an attractive option to be used in the biosorptive process. Finally, a summary of the important considerations for future research work in this field is presented.


2020 ◽  
Vol 6 (3) ◽  
Author(s):  
Catherine Pakhomova ◽  
Dmitry Popov ◽  
Eugenii Maltsev ◽  
Iskander Akhatov ◽  
Alexander Pasko

The bioprinting of heterogeneous organs is a crucial issue. To reach the complexity of such organs, there is a need for highly specialized software that will meet all requirements such as accuracy, complexity, and others. The primary objective of this review is to consider various software tools that are used in bioprinting and to reveal their capabilities. The sub-objective was to consider different approaches for the model creation using these software tools. Related articles on this topic were analyzed. Software tools are classified based on control tools, general computer-aided design (CAD) tools, tools to convert medical data to CAD formats, and a few highly specialized research-project tools. Different geometry representations are considered, and their advantages and disadvantages are considered applicable to heterogeneous volume modeling and bioprinting. The primary factor for the analysis is suitability of the software for heterogeneous volume modeling and bioprinting or multimaterial three-dimensional printing due to the commonality of these technologies. A shortage of specialized suitable software tools is revealed. There is a need to develop a new application area such as computer science for bioprinting which can contribute significantly in future research work.


The exemplary properties of eggshell waste have gained a lot of attention due to its chemical composition and bio-degradable features making it a suitable choice to be used in wastewater treatment. The use of biosorption as an alternate treatment technology to conventional processes such as chemical precipitation and ion exchange is seen as a promising solution to the many drawbacks experienced by conventional processes. Furthermore, due to higher imposed environmental legislations, eco-friendly and low-cost considerations have set the momentum in the search for biosorbents of this nature. With the circular economy being the focal point of industrial operations, eggshell waste is a highly promising biosorbent due to its non-toxicity properties and its ability to be converted from a waste material to a valuable product. In this review paper, fundamental aspects of biosorption will be discussed where the main focus will lie in qualitatively examining the properties of eggshell waste, binding mechanisms, kinetics and isotherm modelling that make it an attractive option to be used in the biosorptive process. Finally, a summary of the important considerations for future research work in this field is presented.


Author(s):  
Bhekisipho Twala ◽  
Michelle Cartwright ◽  
Martin Shepperd

Recently, the use of machine learning (ML) algorithms has proven to be of great practical value in solving a variety of software engineering problems including software prediction, for example, cost and defect processes. An important advantage of machine learning over statistical analysis as a modelling technique lies in the fact that the interpretation of production rules is more straightforward and intelligible to human beings than, say, principal components and patterns with numbers that represent their meaning. The main focus of this chapter is upon rule induction (RI): providing some background and key issues on RI and further examining how RI has been utilised to handle uncertainties in data. Application of RI in prediction and other software engineering tasks is considered. The chapter concludes by identifying future research work when applying rule induction in software prediction. Such future research work might also help solve new problems related to rule induction and prediction.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5073
Author(s):  
Khalil Khan ◽  
Waleed Albattah ◽  
Rehan Ullah Khan ◽  
Ali Mustafa Qamar ◽  
Durre Nayab

Real time crowd analysis represents an active area of research within the computer vision community in general and scene analysis in particular. Over the last 10 years, various methods for crowd management in real time scenario have received immense attention due to large scale applications in people counting, public events management, disaster management, safety monitoring an so on. Although many sophisticated algorithms have been developed to address the task; crowd management in real time conditions is still a challenging problem being completely solved, particularly in wild and unconstrained conditions. In the proposed paper, we present a detailed review of crowd analysis and management, focusing on state-of-the-art methods for both controlled and unconstrained conditions. The paper illustrates both the advantages and disadvantages of state-of-the-art methods. The methods presented comprise the seminal research works on crowd management, and monitoring and then culminating state-of-the-art methods of the newly introduced deep learning methods. Comparison of the previous methods is presented, with a detailed discussion of the direction for future research work. We believe this review article will contribute to various application domains and will also augment the knowledge of the crowd analysis within the research community.


2020 ◽  
Vol 2020 (4) ◽  
pp. 53-59
Author(s):  
Dmitriy Titarev ◽  
Andrey Serikov ◽  
Sergei Krivtsanov

The paper provides an overview of the architectures for the repair and maintenance management software package for a service enterprise. As part of the research work, asset management (EAM) and service management (ITSM) methodologies were studied. Three different architectures for the designed software package are proposed, their descriptions, advantages and disadvantages are given.


Sign in / Sign up

Export Citation Format

Share Document