scholarly journals The Variability of Nitrogen Forms in Soils Due to Traditional and Precision Agriculture: Case Studies in Poland

Author(s):  
Anna Podlasek ◽  
Eugeniusz Koda ◽  
Magdalena Daria Vaverková

The soil and human health issues are closely linked. Properly managed nitrogen (N) does not endanger human health and increases crop production, nevertheless when overused and uncontrolled, can contribute to side effects. This research was intended to highlight that there is a need for carrying out monitoring studies in agricultural areas in order to expand the available knowledge on the content of N forms in agricultural lands and proper management in farming practice. The impact of two types of fertilization, concerning spatially variable (VRA) and uniform (UNI) N dose, on the distribution of N forms in soils was analyzed. The analysis was performed on the basis of soil monitoring data from agricultural fields located in three different experimental sites in Poland. The analyses performed at selected sites were supported by statistical evaluation and recognition of spatial diversification of N forms in soil. It was revealed that the movement of unused N forms to deeper parts of the soil, and therefore to the groundwater system, is more limited due to VRA fertilization. Finally, it was also concluded that the management in agricultural practice should be based on the prediction of spatial variability of soil properties that allow to ensure proper application of N fertilizers, resulting in the reduction of possible N losses.

2020 ◽  
Vol 19 (2) ◽  
pp. 139-145
Author(s):  
Sheena Chhabra ◽  
Apurva Bakshi ◽  
Ravineet Kaur

Nutraceuticals have been around for quite some time. As the nomenclature suggests, they are placed somewhere between food (nutra-) and medicine (-ceuticals) in terms of their impact on human health. Researches have focused on the impact of various types of nutraceuticals on health, their efficacy in health promotion and disease prevention, and often on suitable uses of certain categories of nutraceuticals for specific health issues. However, we are still far from utilizing the immense potential of nutraceuticals for benefiting human health in a substantial manner. We review the available scholarly literature regarding the role of nutraceuticals in health promotion, their efficacy in disease prevention and the perception of nutraceuticals' health benefits by consumers. Thereafter we analyze the need for regulation of nutraceuticals and various provisions regarding the same.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 604 ◽  
Author(s):  
G. D. Schwenke ◽  
B. M. Haigh

Summer crop production on slow-draining Vertosols in a sub-tropical climate has the potential for large emissions of soil nitrous oxide (N2O) from denitrification of applied nitrogen (N) fertiliser. While it is well established that applying N fertiliser will increase N2O emissions above background levels, previous research in temperate climates has shown that increasing N fertiliser rates can increase N2O emissions linearly, exponentially or not at all. Little such data exists for summer cropping in sub-tropical regions. In four field experiments at two locations across two summers, we assessed the impact of increasing N fertiliser rate on both soil N2O emissions and crop yield of grain sorghum (Sorghum bicolor L.) or sunflower (Helianthus annuus L.) in Vertosols of sub-tropical Australia. Rates of N fertiliser, applied as urea at sowing, included a nil application, an optimum N rate and a double-optimum rate. Daily N2O fluxes ranged from –3.8 to 2734g N2O-Nha–1day–1 and cumulative N2O emissions ranged from 96 to 6659g N2O-Nha–1 during crop growth. Emissions of N2O increased with increased N fertiliser rates at all experimental sites, but the rate of N loss was five times greater in wetter-than-average seasons than in drier conditions. For two of the four experiments, periods of intense rainfall resulted in N2O emission factors (EF, percent of applied N emitted) in the range of 1.2–3.2%. In contrast, the EFs for the two drier experiments were 0.41–0.56% with no effect of N fertiliser rate. Additional 15N mini-plots aimed to determine whether N fertiliser rate affected total N lost from the soil–plant system between sowing and harvest. Total 15N unaccounted was in the range of 28–45% of applied N and was presumed to be emitted as N2O+N2. At the drier site, the ratio of N2 (estimated by difference)to N2O (measured) lost was a constant 43%, whereas the ratio declined from 29% to 12% with increased N fertiliser rate for the wetter experiment. Choosing an N fertiliser rate aimed at optimum crop production mitigates potentially high environmental (N2O) and agronomic (N2+N2O) gaseous N losses from over-application, particularly in seasons with high intensity rainfall occurring soon after fertiliser application.


2014 ◽  
Vol 2014 ◽  
pp. 1-52
Author(s):  
Bin Mushambanyi Théodore Munyuli

A study was conducted from 2010 to 2012 around the flower growing areas in central Uganda to generate baseline information on the status of pollinators. Primary data were gathered using a questionnaire that aimed at determining farmers and flower farm officials’ perceptions on the impact of activities carried out inside greenhouses on pollinators, human health, and on crop production in the surroundings. Results indicated that the quantity of pesticides and fertilizers applied daily varied among the different flower farms visited. Bee species richness and abundance varied significantly (P<0.01) according to flower farm location, to the landscape vegetation type, and to field types found in the surrounding of flower farms. Bee richness found around flower farms varied in number from 20 to 40 species in total across seasons and years. Bee density increased significantly with the increase in flower density. Small-scale farmers were aware of the value and importance of pollination services in their farming business. There was no clear evidence of a direct effect of agrochemicals application on bee communities living in the surrounding habitats. There is a need for further research to be conducted on human health risks and for toxicological studies on soils, plants, flowers, and bees in the farm landscape.


Author(s):  
Brett Whelan ◽  
James Taylor

Precision Agriculture (PA) is an approach to managing the variability in production agriculture in a more economic and environmentally efficient manner. It has been pioneered as a management tool in the grains industry, and while its development and uptake continues to grow amongst grain farmers worldwide, a broad range of other cropping industries have embraced the concept. This book explains general PA theory, identifies and describes essential tools and techniques, and includes practical examples from the grains industry. Readers will gain an understanding of the magnitude, spatial scale and seasonality of measurable variability in soil attributes, plant growth and environmental conditions. They will be introduced to the role of sensing systems in measuring crop, soil and environment variability, and discover how this variability may have a significant impact on crop production systems. Precision Agriculture for Grain Production Systems will empower crop and soil science students, agronomy and agricultural engineering students, as well as agronomic advisors and farmers to critically analyse the impact of observed variation in resources on crop production and management decisions.


2019 ◽  
Vol 40 (04) ◽  
Author(s):  
A H Izzah ◽  
W.Y Wan Asrina

Cultivating black pepper in Malaysia started in early 10th to the 11th century when the South Indian Kings began to extend their empire. The crop was brought to East Malaysia in 1840 by Chinese settlers, actively planted until it was hit by the massive flood, fluctuation of the price and outbreak of foot rot. High yielding cultivars such as Kuching, Semenggok Emas and Semenggok Aman provided promise for better production, but resulted in increased soil degradation and reduced crop growth in Sarawak. The paper aims to discuss the black pepper industry in Sarawak and present scenario of its cultivation including future prospects. Cultivating on hilly topography with coarse textured dominant soil becomes one of the limiting factors. This factor is observed due to high rainfall intensity and steeper slopes. Neglected soil conservation also affects crop production and lead to a lower return on investments. Technologies such as land conservation and practising precision agriculture need to be adopted to reduce the impact of soil degradation and better production.


2007 ◽  
Vol 27 (6) ◽  
pp. 359-372 ◽  
Author(s):  
Ilaria Capua ◽  
Dennis J. Alexander

Avian influenza (AI) is a listed disease of the World Organisation for Animal Health (OIE) that has become a disease of great importance both for animal and human health. Until recent times, AI was considered a disease of birds with zoonotic implications of limited significance. The emergence and spread of the Asian lineage highly pathogenic AI (HPAI) H5N1 virus has dramatically changed this perspective; not only has it been responsible of the death or culling of millions of birds, but this virus has also been able to infect a variety of non-avian hosts including human beings. The implications of such a panzootic reflect themselves in animal health issues, notably in the reduction of a protein source for developing countries and in the management of the pandemic potential. Retrospective studies have shown that avian progenitors play an important role in the generation of pandemic viruses for humans, and therefore these infections in the avian reservoir should be subjected to control measures aiming at eradication of the Asian H5N1 virus from all sectors rather than just eliminating or reducing the impact of the disease in poultry.


2012 ◽  
pp. 101-104
Author(s):  
István Balla ◽  
Ákos Tarnawa ◽  
Csaba Horváth ◽  
Judit Kis ◽  
Márton Jolánkai

The development and implementation of precision agriculture or site-specific farming has been made possible by combining the Global Positioning System (GPS) and the Geographic Information Systems (GIS). Site specific agronomic applications are of high importance concerning the efficiency of management in crop production as well as the protection and maintenance of environment and nature. Precision crop production management techniques were applied at four locations to evaluate their impact on small plot units sown by wheat (Triticum aestivum L.) and maize (Zea mays L.) in a Hungarian national case study. The results obtained suggest the applicability of the site specific management techniques, however the crops studied responded in a different way concerning the impact of applications. Maize had a stronger response regarding grain yield and weed canopy. Wheat was responding better than maize concerning plant density and protein content performance.


Author(s):  
Toqeer Ahmed ◽  
Muhammad Zeeshan Hyder ◽  
Irfan Liaqat ◽  
Miklas Scholz

Climate variability is highly impacting on mosquito-borne diseases causing malaria and dengue fever across the globe. Seasonal variability change in temperature and rainfall patterns are impacting on human health. Mosquitoes cause diseases like dengue fever, yellow fever, malaria, Chikungunya, West Nile and Japanese encephalitis. According to estimations by health organizations, annually one million human deaths are caused by vector-borne diseases, and dengue fever has increased about 30-fold over the past 50 years. Similarly, over 200 million cases of malaria are being reported annually. Mosquito-borne diseases are sensitive to temperature, humidity and seasonal variability. Both conventional (environmental, chemical, mechanical, biological etc.) and nanotechnology-based (Liposomes, nano-suspensions and polymer-based nanoparticles) approaches are used for the eradication of Malaria and dengue fever. Now green approaches are used to eradicate mosquitoes to save human health without harming the environment. In this review, the impact of climatic conditions on mosquito-borne diseases along with conventional and nanotechnology-based approaches used for controlling malaria and dengue fever have been discussed. Important recommendations have been made for people to stay healthy.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Faustin Pascal Tsagué Manfo ◽  
Sharon Asukia Mboe ◽  
Edouard Akono Nantia ◽  
Ferdinand Ngoula ◽  
Phélix Bruno Telefo ◽  
...  

Agro pesticides are increasingly used worldwide to increase crop production. However, health hazards resulting from human exposure to these chemicals, especially from agricultural areas of developing countries have been a growing concern. The objective of this study was to evaluate the impact of occupational exposure to agro pesticides on the health of farmers in the Buea subdivision, which is one of the major agrarian areas in Cameroon. The study was transversal and involved 90 participants including 58 farmers using pesticides and a reference population of 32 men not involved in occupational use of agro pesticides. The participants were interviewed on agro pesticide use and their health status. Thereafter, blood samples were collected from the participants and used for the assessment of biochemical markers of the liver (alanine aminotransferase and aspartate aminotransferase) and the kidney (creatinine and uric acid) function. Results revealed that farmers frequently used insecticides, fungicides, and herbicides in their farming activities. Farmers reported several acute health symptoms related to pesticides use with the common ones being skin rash, eye irritation, and face burn. When compared to the reference population, the farmers showed significantly elevated (p<0.01) alanine aminotransferase activity. However, other parameters investigated were not affected significantly. These results suggested that farmers were exposed to 3 different classes of agro pesticides, which induced eye and skin affections. Pesticides exposure resulted in alterations of the liver function hence the increased serum alanine aminotransferase activity. Therefore, there is a need to sensitize the farmers on toxicity and liver alteration potential of agro pesticides and the importance of appropriate protective equipment that may minimize exposure.


2020 ◽  
Vol 21 (2) ◽  
pp. 195-211 ◽  
Author(s):  
Azlini Razali ◽  
Sharifah Norkhadijah Syed Ismail ◽  
Suriyani Awang ◽  
Sarva Mangala Praveena ◽  
Emilia Zainal Abidin

Sign in / Sign up

Export Citation Format

Share Document