scholarly journals Evaluation of Antibiotic Resistance in Bacterial Strains Isolated from Sewage of Slaughterhouses Located in Sicily (Italy)

Author(s):  
Alessio Facciolà ◽  
Antonino Virga ◽  
Maria Eufemia Gioffrè ◽  
Pasqualina Laganà

Antimicrobial resistance is presently one of the most public health critical concerns. The frequent and often incorrect use of antibiotics in animal husbandry has led to the spread of antimicrobial resistance in this setting. Wastewater from slaughterhouses can be contaminated with multidrug-resistant bacteria, representing a possible cross-contamination route. We evaluated the presence of antibiotic-resistant bacteria in wastewater samples from slaughterhouses located in an Italian region. Specifically, 18 slaughterhouses were included in the study. Of the tested samples, 40 bacterial strains were chosen, identified, and tested for antibiotic susceptibility. Pseudomonas spp., Proteus spp., Enterobacter spp., Aeromonas spp., and Citrobacter spp. were the most detected genera. The most resistant strains were on average those belonging to Enterobacter spp. The highest resistance rate was recorded for macrolides. Among β-lactams, penicillins and cephalosporins were by far the molecules towards which the highest resistance was detected. A very interesting finding is the difference found in strains detected in wastewater from poultry slaughterhouses, in which higher levels for almost all the considered drugs were detected compared to those from ungulates slaughterhouses. Our results indicate wastewater from slaughterhouses as a potential vehicle of resistant bacteria and highlight the importance of correct management of these kinds of waters.

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 466
Author(s):  
Herbert Galler ◽  
Josefa Luxner ◽  
Christian Petternel ◽  
Franz F. Reinthaler ◽  
Juliana Habib ◽  
...  

In recent years, antibiotic-resistant bacteria with an impact on human health, such as extended spectrum β-lactamase (ESBL)-containing Enterobacteriaceae, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE), have become more common in food. This is due to the use of antibiotics in animal husbandry, which leads to the promotion of antibiotic resistance and thus also makes food a source of such resistant bacteria. Most studies dealing with this issue usually focus on the animals or processed food products to examine the antibiotic resistant bacteria. This study investigated the intestine as another main habitat besides the skin for multiresistant bacteria. For this purpose, faeces samples were taken directly from the intestines of swine (n = 71) and broiler (n = 100) during the slaughter process and analysed. All samples were from animals fed in Austria and slaughtered in Austrian slaughterhouses for food production. The samples were examined for the presence of ESBL-producing Enterobacteriaceae, MRSA, MRCoNS and VRE. The resistance genes of the isolated bacteria were detected and sequenced by PCR. Phenotypic ESBL-producing Escherichia coli could be isolated in 10% of broiler casings (10 out of 100) and 43.6% of swine casings (31 out of 71). In line with previous studies, the results of this study showed that CTX-M-1 was the dominant ESBL produced by E. coli from swine (n = 25, 83.3%) and SHV-12 from broilers (n = 13, 81.3%). Overall, the frequency of positive samples with multidrug-resistant bacteria was lower than in most comparable studies focusing on meat products.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 495
Author(s):  
Masateru Nishiyama ◽  
Susan Praise ◽  
Keiichi Tsurumaki ◽  
Hiroaki Baba ◽  
Hajime Kanamori ◽  
...  

There is increasing attention toward factors that potentially contribute to antibiotic resistance (AR), as well as an interest in exploring the emergence and occurrence of antibiotic resistance bacteria (ARB). We monitored six ARBs that cause hospital outbreaks in wastewater influent to highlight the presence of these ARBs in the general population. We analyzed wastewater samples from a municipal wastewater treatment plant (MWWTP) and hospital wastewater (HW) for six species of ARB: Carbapenem-resistant Enterobacteria (CARBA), extended-spectrum β-lactamase producing Enterobacteria (ESBL), multidrug-resistant Acinetobacter (MDRA), multidrug-resistant Pseudomonas aeruginosa (MDRP), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococci (VRE). We registered a high percentage of ARBs in MWWTP samples (>66%) for all ARBs except for MDRP, indicating a high prevalence in the population. Percentages in HW samples were low (<78%), and no VRE was detected throughout the study. CARBA and ESBL were detected in all wastewater samples, whereas MDRA and MRSA had a high abundance. This result demonstrated the functionality of using raw wastewater at MWWTP to monitor the presence and extent of ARB in healthy populations. This kind of surveillance will contribute to strengthening the efforts toward reducing ARBs through the detection of ARBs to which the general population is exposed.


Author(s):  
Nahla Omer Eltai ◽  
Hadi M. Yassine ◽  
Sara H. Al-Hadidi ◽  
Tahra ElObied ◽  
Asmaa A. Al Thani ◽  
...  

The dissemination of antimicrobial resistance (AMR) bacteria has been associated with the inappropriate use of antibiotics in both humans and animals and with the consumption of food contaminated with resistant bacteria. In particular, the use of antibiotics as prophylactic and growth promotion purposes in food-producing animals has rendered many of the antibiotics ineffective. The increased global prevalence of AMR poses a significant threat to the safety of the world’s food supply. Objectives: This study aims at determining the prevalence of antibiotic-resistant Escherichia coli (E. coli) isolated from local and imported retail chicken meat in Qatar. Methodology: A total of 270 whole chicken carcasses were obtained from three different hypermarket stores in Qatar. A total of 216 E. coli were isolated and subjected to antibiotic susceptibility testing against 18 relevant antibiotics using disc diffusion and micro- dilution methods. Furthermore, extended-spectrum β-lactamase (ESBL) production was determined via a double-disc synergetic test. Isolates harboring colistin resistance were confirmed using multiplex-PCR and DNA sequencing. Results: Nearly 89% (192/216) of the isolates were resistant to at least one antibiotics. In general, isolates showed relatively higher resistance to sulfamethoxazole (62%), tetracycline (59.7%), ampicillin and trimethoprim (52.3%), ciprofloxacin (47.7%), cephalothin, and colistin (31.9%). On the other hand, less resistance was recorded against amoxicillin/clavulanic acid (6%), ceftriaxone (5.1%), nitrofurantoin (4.2%) and piperacillin/tazobactam (4.2%), cefepime (2.3%), meropenem (1.4%), ertapenem (0.9%), and amikacin (0.9%). Nine isolates (4.2%) were ESBL producers. Furthermore, 63.4% were multidrug-resistant (MDR). The percentage of MDR, ESBL producers, and colistin-resistant isolates was significantly higher among local isolates compared to imported chicken samples. Conclusion: We reported a remarkably high percentage of the antibiotic-resistant E. coli in chicken meat sold at retail in Qatar. The high percentage of MDR and colistin isolates is troublesome to the food safety of raw chicken meat and the potential of antibiotic resistance spread to public health. Our findings support the need for the implementation of one health approach to address the spread of antimicrobial resistance and the need for a collaborative solution.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Silpi Basak ◽  
Priyanka Singh ◽  
Monali Rajurkar

Background and Objective. Antimicrobial resistance is now a major challenge to clinicians for treating patients. Hence, this short term study was undertaken to detect the incidence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) bacterial isolates in a tertiary care hospital.Material and Methods. The clinical samples were cultured and bacterial strains were identified in the department of microbiology. The antibiotic susceptibility profile of different bacterial isolates was studied to detect MDR, XDR, and PDR bacteria.Results. The antibiotic susceptibility profile of 1060 bacterial strains was studied. 393 (37.1%) bacterial strains were MDR, 146 (13.8%) strains were XDR, and no PDR was isolated. All (100%) Gram negative bacterial strains were sensitive to colistin whereas all (100%) Gram positive bacterial strains were sensitive to vancomycin.Conclusion. Close monitoring of MDR, XDR, or even PDR must be done by all clinical microbiology laboratories to implement effective measures to reduce the menace of antimicrobial resistance.


2020 ◽  
Vol 4 (1) ◽  
pp. 91-106
Author(s):  
Cassandra Sturgeon Delia

A crucial issue that threatens humanity worldwide, is the misuse of antibiotics (Marquard & Li, 2018). However, the terms misuse and overuse of antibiotics are widely misunderstood, as many assume that antibiotics are only acquired directly through a prescription by a medical professional. The reality of the situation is much more complex, and many do not realise the indirect intake through ingestion with food (Philips et al., 2003) and recreational actions (Schwartz et al., 2003). Moreover, such information is kept out of the limelight, keeping the community unaware of this pressing issue. Antibiotic resistance is escalating globally as social behaviour is leading to selective pressure creating resistant strains of bacteria through excessive exploitation of antibiotics (Okeke & Edelman, 1999). This article aims to address the mechanisms of antibiotic-resistant bacteria and the link to healthy individuals’ gut flora, creating asymptomatic carriers within the community. Since many students at MCAST are undertaking courses that may aid in the transportation of antibiotic-resistant bacteria, such as animal husbandry, they need to be aware of bacterial strains found in farm animals, which pose a potential risk to humans via the food chain. Students undergoing courses that lead to health-related work, seeking future employment in a clinical setting, also need to be aware of the threat antibiotic-resistant pathogens pose to humans advancing from a clinical setting to the community. Persons working within such industries need to understand both how pathogens gain resistance, and how they spread, to apprehend methods of avoiding transmission. This study endeavours to increase local awareness within the community, and avoid this socioeconomic threat, by addressing behavioural factors.


2020 ◽  
Vol 75 (12) ◽  
pp. 3665-3674 ◽  
Author(s):  
Christina Routsi ◽  
Aikaterini Gkoufa ◽  
Kostoula Arvaniti ◽  
Stelios Kokkoris ◽  
Alexandros Tourtoglou ◽  
...  

Abstract Background De-escalation of empirical antimicrobial therapy, a key component of antibiotic stewardship, is considered difficult in ICUs with high rates of antimicrobial resistance. Objectives To assess the feasibility and the impact of antimicrobial de-escalation in ICUs with high rates of antimicrobial resistance. Methods Multicentre, prospective, observational study in septic patients with documented infections. Patients in whom de-escalation was applied were compared with patients without de-escalation by the use of a propensity score matching by SOFA score on the day of de-escalation initiation. Results A total of 262 patients (mean age 62.2 ± 15.1 years) were included. Antibiotic-resistant pathogens comprised 62.9%, classified as MDR (12.5%), extensively drug-resistant (49%) and pandrug-resistant (1.2%). In 97 (37%) patients de-escalation was judged not feasible in view of the antibiotic susceptibility results. Of the remaining 165 patients, judged as patients with de-escalation possibility, de-escalation was applied in 60 (22.9%). These were matched to an equal number of patients without de-escalation. In this subset of 120 patients, de-escalation compared with no de-escalation was associated with lower all-cause 28 day mortality (13.3% versus 36.7%, OR 0.27, 95% CI 0.11–0.66, P = 0.006); ICU and hospital mortality were also lower. De-escalation was associated with a subsequent collateral decrease in the SOFA score. Cox multivariate regression analysis revealed de-escalation as a significant factor for 28 day survival (HR 0.31, 95% CI 0.14–0.70, P = 0.005). Conclusions In ICUs with high levels of antimicrobial resistance, feasibility of antimicrobial de-escalation was limited because of the multi-resistant pathogens isolated. However, when de-escalation was feasible and applied, it was associated with lower mortality.


2015 ◽  
Vol 35 (6) ◽  
pp. 552-556 ◽  
Author(s):  
Ruben V. Horn ◽  
William M. Cardoso ◽  
Elisângela S. Lopes ◽  
Régis S.C. Teixeira ◽  
Átilla H. Albuquerque ◽  
...  

Abstract: The Enterobacteriaceae family contains potentially zoonotic bacteria, and their presence in canaries is often reported, though the current status of these in bird flocks is unknown. Therefore, this study aimed to identify the most common genera of enterobacteria from canaries (Serinus canaria) and their antimicrobial resistance profiles. From February to June of 2013, a total of 387 cloacal swab samples from eight domiciliary breeding locations of Fortaleza city, Brazil, were collected and 58 necropsies were performed in canaries, which belonged to the Laboratory of Ornithological Studies. The samples were submitted to microbiological procedure using buffered peptone water and MacConkey agar. Colonies were selected according to their morphological characteristics on selective agar and submitted for biochemical identification and antimicrobial susceptibility. A total of 61 isolates were obtained, of which 42 were from cloacal swabs and 19 from necropsies. The most isolated bacteria was Escherichia coli with twenty five strains, followed by fourteen Klebsiellaspp., twelve Enterobacterspp., seven Pantoea agglomerans, two Serratiaspp. and one Proteus mirabilis. The antimicrobial to which the strains presented most resistance was sulfonamides with 55.7%, followed by ampicillin with 54.1% and tetracycline with 39.3%. The total of multidrug-resistant bacteria (MDR) was 34 (55.7%). In conclusion, canaries harbor members of the Enterobacteriaceae family and common strains present a high antimicrobial resistance rate, with a high frequency of MDR bacteria.


2021 ◽  
Vol 83 (4) ◽  
Author(s):  
Christopher W. Lanyon ◽  
John R. King ◽  
Dov J. Stekel ◽  
Rachel L. Gomes

AbstractThe ecological and human health impact of antibiotic use and the related antimicrobial resistance (AMR) in animal husbandry is poorly understood. In many countries, there has been considerable pressure to reduce overall antibiotic use in agriculture or to cease or minimise use of human critical antibiotics. However, a more nuanced approach would consider the differential impact of use of different antibiotic classes; for example, it is not known whether reduced use of bacteriostatic or bacteriolytic classes of antibiotics would be of greater value. We have developed an ordinary differential equation model to investigate the effects of farm practice on the spread and persistence of AMR in the dairy slurry tank environment. We model the chemical fate of bacteriolytic and bacteriostatic antibiotics within the slurry and their effect on a population of bacteria, which are capable of resistance to both types of antibiotic. Through our analysis, we find that changing the rate at which a slurry tank is emptied may delay the proliferation of multidrug-resistant bacteria by up to five years depending on conditions. This finding has implications for farming practice and the policies that influence waste management practices. We also find that, within our model, the development of multidrug resistance is particularly sensitive to the use of bacteriolytic antibiotics, rather than bacteriostatic antibiotics, and this may be cause for controlling the usage of bacteriolytic antibiotics in agriculture.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 314 ◽  
Author(s):  
Marta Bottagisio ◽  
Arianna Lovati ◽  
Fabio Galbusera ◽  
Lorenzo Drago ◽  
Giuseppe Banfi

The increase of multidrug-resistant bacteria remains a global concern. Among the proposed strategies, the use of nanoparticles (NPs) alone or associated with orthopedic implants represents a promising solution. NPs are well-known for their antimicrobial effects, induced by their size, shape, charge, concentration and reactive oxygen species (ROS) generation. However, this non-specific cytotoxic potential is a powerful weapon effective against almost all microorganisms, but also against eukaryotic cells, raising concerns related to their safe use. Among the analyzed transition metals, silver is the most investigated element due to its antimicrobial properties per se or as NPs; however, its toxicity raises questions about its biosafety. Even though it has milder antimicrobial and cytotoxic activity, TiO2 needs to be exposed to UV light to be activated, thus limiting its use conjugated to orthopedic devices. By contrast, gold has a good balance between antimicrobial activity as an NP and cytocompatibility because of its inability to generate ROS. Nevertheless, although the toxicity and persistence of NPs within filter organs are not well verified, nowadays, several basic research on NP development and potential uses as antimicrobial weapons is reported, overemphasizing NPs potentialities, but without any existing potential of translation in clinics. This analysis cautions readers with respect to regulation in advancing the development and use of NPs. Hopefully, future works in vivo and clinical trials will support and regulate the use of nano-coatings to guarantee safer use of this promising approach against antibiotic-resistant microorganisms.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 353
Author(s):  
Immacolata La Tela ◽  
Maria Francesca Peruzy ◽  
Nicola D’Alessio ◽  
Fabio Di Nocera ◽  
Francesco Casalinuovo ◽  
...  

Wild animals are potential vectors of antibiotic-resistant bacteria in the environment. The present study aimed to investigate the occurrence of antimicrobial resistance among Salmonella serovars isolated from wildlife and the environment in Italy. A total of 164 Salmonella isolates were analyzed, and six different subspecies and 64 serovars were detected. High proportions of Salmonella isolates proved resistant to streptomycin (34.1%), followed by trimethoprim-sulfamethoxazole (23.2%), tetracycline (17.7%), ciprofloxacin (14.63%) and ampicillin (11.59%). By source, the lowest level of resistance was observed in Salmonella serovars isolated from a water environment, while antimicrobial resistance was frequent in strains collected from shellfish, reptiles and birds. Multidrug-resistant strains were recovered from seafood (n = 11), mammals (n = 3) and water (n = 1). Three S. Typhimurium monophasic variant strains showed asimultaneous resistance to ampicillin, streptomycin, tetracycline and trimethoprim-sulfamethoxazole, which represents a recognized alert resistance profile for this serovar. These data indicate the environmental dissemination of resistant strains due to anthropogenic activities, which, in southern Italy, probably have a higher impact on marine ecosystems than on terrestrial ones. Moreover, as most of the animals considered in the present study are usually consumed by humans, the presence of resistant bacteria in them is a matter of great concern.


Sign in / Sign up

Export Citation Format

Share Document