scholarly journals Analyzing Spatial Dependency of the 2016–2017 Korean HPAI Outbreak to Determine the Effective Culling Radius

Author(s):  
Kwideok Han ◽  
Meilan An ◽  
Inbae Ji

Highly pathogenic avian influenza (HPAI) outbreaks are a threat to human health and cause extremely large financial losses to the poultry industry due to containment measures. Determining the most effective control measures, especially the culling radius, to minimize economic impacts yet contain the spread of HPAI is of great importance. This study examines the factors influencing the probability of a farm being infected with HPAI during the 2016–2017 HPAI outbreak in Korea. Using a spatial random effects logistic model, only a few factors commonly associated with a higher risk of HPAI infection were significant. Interestingly, most density-related factors, poultry and farm, were not significantly associated with a higher risk of HPAI infection. The effective culling radius was determined to be two ranges: 0.5–2.2 km and 2.7–3.0 km. This suggests that the spatial heterogeneity, due to local characteristics and/or the characteristics of the HPAI virus(es) involved, should be considered to determine the most effective culling radius in each region. These findings will help strengthen biosecurity control measures at the farm level and enable authorities to quickly respond to HPAI outbreaks with effective countermeasures to suppress the spread of HPAI.

Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 694
Author(s):  
Nathaniel Nyakaat Ninyio ◽  
Kok Lian Ho ◽  
Abdul Rahman Omar ◽  
Wen Siang Tan ◽  
Munir Iqbal ◽  
...  

Epizootics of highly pathogenic avian influenza (HPAI) have resulted in the deaths of millions of birds leading to huge financial losses to the poultry industry worldwide. The roles of migratory wild birds in the harbouring, mutation, and transmission of avian influenza viruses (AIVs), and the lack of broad-spectrum prophylactic vaccines present imminent threats of a global panzootic. To prevent this, control measures that include effective AIV surveillance programmes, treatment regimens, and universal vaccines are being developed and analysed for their effectiveness. We reviewed the epidemiology of AIVs with regards to past avian influenza (AI) outbreaks in birds. The AIV surveillance programmes in wild and domestic birds, as well as their roles in AI control were also evaluated. We discussed the limitations of the currently used AI vaccines, which necessitated the development of a universal vaccine. We evaluated the current development of AI vaccines based upon virus-like particles (VLPs), particularly those displaying the matrix-2 ectodomain (M2e) peptide. Finally, we highlighted the prospects of these VLP vaccines as universal vaccines with the potential of preventing an AI panzootic.


Oryx ◽  
2014 ◽  
Vol 49 (2) ◽  
pp. 254-260 ◽  
Author(s):  
Carolina A. Soto ◽  
Francisco Palomares

AbstractThe presence of domestic species such as dogs Canis familiaris in protected areas can cause problems for native species as a result of competition, predation and disease transmission. To improve our ability to design effective control policies we investigated the factors affecting detection of dog tracks in a Mediterranean national park.We investigated the presence of dogs across 69 2 × 2 km grid squares in Doñana National Park in south-west Spain and used logistic regression models to analyse the associated environmental and human constraints. We did not detect dogs in areas away from the edges of the national park close to human settlements (track census effort > 470 km) and the detection of dog tracks was correlated with human presence. We conclude that domestic dogs occasionally enter the Park from the surrounding area and are a direct threat to wildlife at the edges of the Park. Management actions to reduce the effects of domestic dogs in protected areas where feral dog populations are not established should focus on the spatial extent of local settlements, regulation and awareness-raising to encourage responsible dog-ownership, and control measures such as removing un-owned dogs from boundaries and areas close to human dwellings, and forbidding unleashed dogs in public facilities.


2018 ◽  
Vol 93 (3) ◽  
pp. 367-371 ◽  
Author(s):  
M.K. Kouam ◽  
R. Meningue ◽  
D.E. Fon

AbstractAn abattoir study was carried out between May and October 2016 to determine the parasitic causes of organ condemnation during meat inspection and to evaluate the attendant financial losses in Fako abattoirs, in the South-West region of Cameroon. Organs (liver, lungs, heart, tongue, kidney, spleen and intestine) were examined at meat inspection following standard procedures and the financial loss was estimated by considering the total weight of condemned organs and the price per kilogram of marketable organs, obtained from the local market. The organs of 1472 cattle were examined, of which 357 (24.38%) were condemned. The organs condemned because of parasitic infestations were the liver (333) and small intestine (24), and the infections were caused by flukes of Fasciola sp. and proglottids of Moniezia sp., respectively. Hydatid cysts and cysticerci were absent. The prevalence of fasciolosis and monieziosis was 22.62% and 1.63%, respectively. Condemnation deprived the region of 665.457 kg of meat, with an associated financial loss of CFA 1,330,902 (USD 2505), during the study period. Parasitic diseases worsen the food insecurity situation as they result in the withdrawal of a considerable amount of meat from the food chain. Fasciolosis, the leading parasitic cause of meat condemnation in Fako, is also zoonotic. It is therefore important that effective control measures are implemented countrywide against this parasitosis.


2020 ◽  
Author(s):  
Lukman Olagoke ◽  
Ahmet E. Topcu

BACKGROUND COVID-19 represents a serious threat to both national health and economic systems. To curb this pandemic, the World Health Organization (WHO) issued a series of COVID-19 public safety guidelines. Different countries around the world initiated different measures in line with the WHO guidelines to mitigate and investigate the spread of COVID-19 in their territories. OBJECTIVE The aim of this paper is to quantitatively evaluate the effectiveness of these control measures using a data-centric approach. METHODS We begin with a simple text analysis of coronavirus-related articles and show that reports on similar outbreaks in the past strongly proposed similar control measures. This reaffirms the fact that these control measures are in order. Subsequently, we propose a simple performance statistic that quantifies general performance and performance under the different measures that were initiated. A density based clustering of based on performance statistic was carried out to group countries based on performance. RESULTS The performance statistic helps evaluate quantitatively the impact of COVID-19 control measures. Countries tend show variability in performance under different control measures. The performance statistic has negative correlation with cases of death which is a useful characteristics for COVID-19 control measure performance analysis. A web-based time-line visualization that enables comparison of performances and cases across continents and subregions is presented. CONCLUSIONS The performance metric is relevant for the analysis of the impact of COVID-19 control measures. This can help caregivers and policymakers identify effective control measures and reduce cases of death due to COVID-19. The interactive web visualizer provides easily digested and quick feedback to augment decision-making processes in the COVID-19 response measures evaluation. CLINICALTRIAL Not Applicable


Author(s):  
Ting Wan Tan ◽  
Han Ling Tan ◽  
Man Na Chang ◽  
Wen Shu Lin ◽  
Chih Ming Chang

(1) Background: The implementation of effective control measures in a timely fashion is crucial to control the epidemic outbreak of COVID-19. In this study, we aimed to analyze the control measures implemented during the COVID-19 outbreak, as well as evaluating the responses and outcomes at different phases for epidemic control in Taiwan. (2) Methods: This case study reviewed responses to COVID-19 and the effectiveness of a range of control measures implemented for epidemic control in Taiwan and assessed all laboratory-confirmed cases between 11 January until 20 December 2020, inclusive of these dates. The confirmation of COVID-19 infection was defined as the positive result of a reverse-transcriptase–polymerase-chain-reaction test taken from a nasopharyngeal swab. Test results were reported by the Taiwan Centers for Disease Control. The incidence rate, mortality rate, and testing rate were compiled, and the risk ratio was provided to gain insights into the effectiveness of prevention measures. (3) Results and Discussion: This study presents retrospective data on the COVID-19 incidence rate in Taiwan, combined with the vital preventive control measures, in a timeline of the early stage of the epidemic that occurred in Taiwan. The implementation of multiple strategy control measures and the assistance of technologies to control the COVID-19 epidemic in Taiwan led to a relatively slower trend in the outbreak compared to the neighboring countries. In Taiwan, 766 confirmed patients were included, comprised of 88.1% imported cases and 7.2% local transmission cases, within the studied period. The incidence rate of COVID-19 in Taiwan during the studied period was 32 per million people, with a mortality rate of 0.3 per million people. Our analysis showed a significantly raised incidence risk ratio in the countries of interest in comparison to Taiwan during the study period; in the range of 1.9 to 947.5. The outbreak was brought under control through epidemic policies and hospital strategies implemented by the Taiwan Government. (4) Conclusion: Taiwan’s preventive strategies resulted in a drastically lower risk for Taiwan nationals of contracting COVID-19 when new pharmaceutical drug or vaccines were not yet available. The preventive strategies employed by Taiwan could serve as a guide and reference for future epidemic control strategies.


2020 ◽  
Vol 13 (1) ◽  
pp. 238
Author(s):  
Alice Giusti ◽  
Enrica Ricci ◽  
Laura Gasperetti ◽  
Marta Galgani ◽  
Luca Polidori ◽  
...  

Proper investment in mushroom production (farming and wild mushroom picking activities) may represent a winning strategy for many countries, including Italy, to better face the problems of food security and environmental impact, and to break away from imports, enhancing the local products. However, the risk related to the consumption of poisoning species requires governments to implement or reinforce effective control measures to protect consumers. Mushroom identification by phenotype observation is hardly applicable if morphologically-similar species, non-whole specimens, or clinical samples are involved. Genotypic analysis is a valid alternative. An ongoing research project involving the Experimental Zooprophylactic Institute of Lazio and Tuscany, the regional Mycological Inspectorate, the Tuscany Mycological Groups Association, and the Department of Veterinary Sciences of the University of Pisa aims to reinforce the collaboration among institutions for the management of mushroom poisoning. The core’s project aims to develop an internal genetic database to support the identification of wild and cultivated mushroom species in the Italian territory. The database will include Internal Transcribed Spacer (ITS) sequences retrieved from official databases (the NCBI GenBank and the BOLD system) which are considered to be reliable, after a proper selection process, and sequences from specimens collected directly and identified by expert mycologists. Once it is validated, the database will be available and further implementable by the official network of national laboratories.


2020 ◽  
Vol 41 (S1) ◽  
pp. s412-s412
Author(s):  
Sarah Redmond ◽  
Jennifer Cadnum ◽  
Basya Pearlmutter ◽  
Natalia Pinto Herrera ◽  
Curtis Donskey

Background: Transmission of healthcare-associated pathogens such as Clostridioides difficile and methicillin-resistant Staphylococcus aureus (MRSA) is a persistent problem in healthcare facilities despite current control measures. A better understanding of the routes of pathogen transmission is needed to develop effective control measures. Methods: We conducted an observational cohort study in an acute-care hospital to identify the timing and route of transfer of pathogens to rooms of newly admitted patients with negative MRSA nares results and no known carriage of other healthcare-associated pathogens. Rooms were thoroughly cleaned and disinfected prior to patient admission. Interactions of patients with personnel and portable equipment were observed, and serial cultures for pathogens were collected from the skin of patients and from surfaces, including those observed to come in contact with personnel and equipment. For MRSA, spa typing was used to determine relatedness of patient and environmental isolates. Results: For the 17 patients enrolled, 1 or more environmental cultures became positive for MRSA in rooms of 10 patients (59%), for C. difficile in rooms of 2 patients (12%) and for vancomycin-resistant enterococci (VRE) in rooms of 2 patients (12%). The patients interacted with an average of 2.4 personnel and 0.6 portable devices per hour of observation. As shown in Figure 1, MRSA contamination of the floor occurred rapidly as personnel entered the room. In a subset of patients, MRSA was subsequently recovered from patients’ socks and bedding and ultimately from the high-touch surfaces in the room (tray table, call button, bedrail). For several patients, MRSA isolates recovered from the floor had the same spa type as isolates subsequently recovered from other sites (eg, socks, bedding, and/or high touch surfaces). The direct transfer of healthcare-associated pathogens from personnel or equipment to high-touch surfaces was not detected. Conclusions: Healthcare-associated pathogens rapidly accumulate on the floor of patient rooms and can be transferred to the socks and bedding of patients and to high-touch surfaces. Healthcare facility floors may be an underappreciated source of pathogen dissemination not addressed by current infection control measures.Funding: NoneDisclosures: None


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cui Zhang ◽  
Cihan Oguz ◽  
Sue Huse ◽  
Lu Xia ◽  
Jian Wu ◽  
...  

Abstract Background Rodent malaria parasites are important models for studying host-malaria parasite interactions such as host immune response, mechanisms of parasite evasion of host killing, and vaccine development. One of the rodent malaria parasites is Plasmodium yoelii, and multiple P. yoelii strains or subspecies that cause different disease phenotypes have been widely employed in various studies. The genomes and transcriptomes of several P. yoelii strains have been analyzed and annotated, including the lethal strains of P. y. yoelii YM (or 17XL) and non-lethal strains of P. y. yoelii 17XNL/17X. Genomic DNA sequences and cDNA reads from another subspecies P. y. nigeriensis N67 have been reported for studies of genetic polymorphisms and parasite response to drugs, but its genome has not been assembled and annotated. Results We performed genome sequencing of the N67 parasite using the PacBio long-read sequencing technology, de novo assembled its genome and transcriptome, and predicted 5383 genes with high overall annotation quality. Comparison of the annotated genome of the N67 parasite with those of YM and 17X parasites revealed a set of genes with N67-specific orthology, expansion of gene families, particularly the homologs of the Plasmodium chabaudi erythrocyte membrane antigen, large numbers of SNPs and indels, and proteins predicted to interact with host immune responses based on their functional domains. Conclusions The genomes of N67 and 17X parasites are highly diverse, having approximately one polymorphic site per 50 base pairs of DNA. The annotated N67 genome and transcriptome provide searchable databases for fast retrieval of genes and proteins, which will greatly facilitate our efforts in studying the parasite biology and gene function and in developing effective control measures against malaria.


2020 ◽  
Vol 367 (9) ◽  
Author(s):  
Natalya V Besarab ◽  
Artur E Akhremchuk ◽  
Maryna A Zlatohurska ◽  
Liudmyla V Romaniuk ◽  
Leonid N Valentovich ◽  
...  

ABSTRACT Fire blight, caused by plant pathogenic bacterium Erwinia amylovora, is one of the most important diseases of Rosaceae plants. Due to the lack of effective control measures, fire blight infections pose a recurrent threat on agricultural production worldwide. Recently, bacterial viruses, or bacteriophages, have been proposed as environmentally friendly natural antimicrobial agents for fire blight control. Here, we isolated a novel bacteriophage Hena1 with activity against E. amylovora. Further analysis revealed that Hena1 is a narrow-host-range lytic phage belonging to Myoviridae family. Its genome consists of a linear 148,842 bp dsDNA (48.42% GC content) encoding 240 ORFs and 23 tRNA genes. Based on virion structure and genomic composition, Hena1 was classified as a new species of bacteriophage subfamily Vequintavirinae. The comprehensive analysis of Hena1 genome may provide further insights into evolution of bacteriophages infecting plant pathogenic bacteria.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Indira Labrador ◽  
María Araque

During the last decade, carbapenem resistance has emerged among clinical isolates of the Enterobacteriaceae family. This has been increasingly attributed to the production ofβ-lactamases capable of hydrolyzing carbapenems. Among these enzymes,Klebsiella pneumoniaecarbapenemases (KPCs) are the most frequently and clinically significant class-A carbapenemases. In this report, we describe the first nosocomial KPC-2-producingK. oxytocaisolated from a pediatric patient with pneumonia admitted to the intensive care unit at The Andes University Hospital, Mérida, Venezuela. This strain was resistant to several antibiotics including imipenem, ertapenem, and meropenem but remained susceptible to ciprofloxacin, colistin, and tigecycline. Conjugation assays demonstrated the transferability of all resistance determinants, except aminoglycosides. The isolate LMM-SA26 carried a ~21 kb conjugative plasmid that harbored theblaKPC-2,blaCTX-M-8, andblaTEM-15genes. Although carbapenem resistance in the Enterobacteriaceae is still unusual in Venezuela, KPCs have a great potential to spread due to their localization on mobile genetic elements. Therefore, rapid detection of KPC-carrying bacteria with phenotypic and confirmatory molecular tests is essential to establish therapeutic options and effective control measures.


Sign in / Sign up

Export Citation Format

Share Document