scholarly journals Seasonal Variation, Chemical Composition, and PMF-Derived Sources Identification of Traffic-Related PM1, PM2.5, and PM2.5–10 in the Air Quality Management Region of Žilina, Slovakia

Author(s):  
Dusan Jandacka ◽  
Daniela Durcanska

Particulate matter (PM) air pollution in the urban environment is mainly related to the presence of potential sources throughout the year. Road transport is one of the most important sources of PM in the urban environment, because it directly affects pedestrians. PM measurements were performed in the city of Žilina, Slovakia, at various road-traffic-related measurement stations over the course of several years. This paper evaluates changes in the concentration of the fine fraction (PM2.5), the ultrafine fraction (PM1), and the coarse fraction (PM2.5–10) over time. PM concentrations were measured by reference gravimetric method. Significant changes in PM concentrations over time due to the diversification of pollution sources and other, secondary factors can be observed from the analysis of the measured data. PM samples were subjected to chemical analysis inductively coupled plasma mass spectrometry (ICP-MS) to determine the concentrations of elements (Mg, Al, Ca, Cr, Cu, Fe, Cd, Sb, Ba, Pb, Ni, and Zn). The seasonal variation of elements was evaluated, and the sources of PM2.5, PM1, and PM2.5–10 were estimated using principal component analysis (PCA) and positive matrix factorization (PMF). PM2.5 (maximum concentration of 148.95 µg/m3 over 24 h) and PM1 (maximum concentration of 110.51 µg/m3 over 24 h) showed the highest concentrations during the heating season, together with the elements Cd, Pb, and Zn, which showed a significant presence in these fractions. On the other hand, PM2.5–10 (maximum concentration of 38.17 µg/m3 over 24 h) was significantly related to the elements Cu, Sb, Ba, Ca, Cr, Fe, Mg, and Al. High correlation coefficients (r ≥ 0.8) were found for the elements Mg, Ca, Fe, Al, Cd, Pb, and Zn in the PM1 fraction, Cd, Pb, and Zn in PM2.5, and Ba, Sb, Fe, Cu, Cr, Mg, Al, and Ca in PM2.5–10. Using PMF analysis, three major sources of PM (abrasion from tires and brakes, road dust resuspension/winter salting, and combustion processes) were identified for the PM2.5 and PM1 fractions, as well as for the coarse PM2.5–10 fraction. This study reveals the importance of non-exhaust PM emissions in the urban environment.

Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 583 ◽  
Author(s):  
Dusan Jandacka ◽  
Daniela Durcanska

Urban air quality is continuing to deteriorate. If we want to do something about this problem, we need to know the cause of the pollution. The big problem, not only in Europe, is the high concentrations of particulate matter (PM) in the urban environment. The origin of these particles can be different, including combustion, transport, industry, natural resources, etc. Particulate matter includes a large amount of the finest PM fractions, which can remain in the air for a long time, easily enter respiratory tracks, and damage human health. Particulate matter is also produced by the abrasion of different parts of roads and vehicle fleets and from resuspension road dust, which concerns matter with larger aerodynamic diameters. For this reason, we carried out a series of measurements at various measuring stations in Žilina, Slovakia, during different measuring seasons. The main objective was to find out the diversity of particulate matter sources in Žilina. The search for the particulate matter origin was carried out by particulate matter measurements, determination of the particulate matter fraction concentrations (PM10, PM2.5, and PM1), an investigation on the effect of secondary factors on the particulate matter concentrations, chemical analyses, and multivariate statistical analyses. Varied behavior of the particulate matter with respect to the measurement station and the measurement season was found. Differences in the concentrations of investigated chemical elements contained in the PM were found. Significant changes in the concentrations of particulate matter are caused not only by primary sources (e.g., road traffic in the city of Žilina), but mainly by the negative events (combination of air pollution sources and meteorological conditions). Maximum concentrations of particulate matter PM10 were measured during the winter season at the measuring station on Komenského Street: PM10 126.2 µg/m3, PM2.5 97.7 µg/m3, and PM1 90.4 µg/m3 were obtained using the gravimetric method. The coarse fraction PM2.5-10 was mainly represented by the chemical elements Mg, Al, Si, Ca, Cr, Fe, and Ba, and the fine fraction PM2.5 was represented by the chemical elements K, S, Cd, Pb, Ni, and Zn. Road transport as a dominant source of PM10 was identified from all measurements in the city of Žilina by using the multivariate statistical methods of principal component analysis (PCA) and factor analysis (FA).


2014 ◽  
Vol 14 (2) ◽  
pp. 1075-1092 ◽  
Author(s):  
S. Sandrini ◽  
L. Giulianelli ◽  
S. Decesari ◽  
S. Fuzzi ◽  
P. Cristofanelli ◽  
...  

Abstract. Continuous measurements of physical and chemical properties at the Mt. Cimone (Italy) GAW-WMO (Global Atmosphere Watch, World Meteorological Organization) Global Station (2165 m a.s.l.) have allowed the detection of the volcanic aerosol plume resulting from the Eyjafjallajökull (Iceland) eruption of spring 2010. The event affected the Mt. Cimone site after a transport over a distance of more than 3000 km. Two main transport episodes were detected during the eruption period, showing a volcanic fingerprint discernible against the free tropospheric background conditions typical of the site, the first from April 19 to 21 and the second from 18 to 20 May 2010. This paper reports the modification of aerosol characteristics observed during the two episodes, both characterised by an abrupt increase in fine and, especially, coarse mode particle number. Analysis of major, minor and trace elements by different analytical techniques (ionic chromatography, particle induced X-ray emission–particle induced gamma-ray emission (PIXE–PIGE) and inductively coupled plasma mass spectrometry (ICP-MS)) were performed on aerosols collected by ground-level discrete sampling. The resulting database allows the characterisation of aerosol chemical composition during the volcanic plume transport and in background conditions. During the passage of the volcanic plume, the fine fraction was dominated by sulphates, denoting the secondary origin of this mode, mainly resulting from in-plume oxidation of volcanic SO2. By contrast, the coarse fraction was characterised by increased concentration of numerous elements of crustal origin, such as Fe, Ti, Mn, Ca, Na, and Mg, which enter the composition of silicate minerals. Data analysis of selected elements (Ti, Al, Fe, Mn) allowed the estimation of the volcanic plume's contribution to total PM10, resulting in a local enhancement of up to 9.5 μg m−3, i.e. 40% of total PM10 on 18 May, which was the most intense of the two episodes. These results appear significant, especially in light of the huge distance of Mt. Cimone from the source, confirming the widespread diffusion of the Eyjafjallajökull ashes over Europe.


2007 ◽  
Vol 7 (4) ◽  
pp. 10589-10629 ◽  
Author(s):  
X. Querol ◽  
J. Pey ◽  
M. C. Minguillón ◽  
N. Pérez ◽  
A. Alastuey ◽  
...  

Abstract. Levels of PM10, PM2.5 and PM1 and chemical speciation of PM10 and PM2.5 were measured during the MILAGRO campaign (1 to 31 March 2006, but extended in some cases until 6 April) at four urban, one suburban, two rural, two rural background sites with different degree of industrial influence in the Mexico City Metropolitan Area (MCMA) and adjacent regions. PM10 and PM2.5 daily levels varied between 50–56 μg/m³ and 24–46 μg/m³ at the urban sites, 22–35 μg/m³ and 13–25 μg/m³ at the rural sites, and 75 μg/m³ and 31 $\\mu $g/m³ at the industrial hotspot, respectively; lower than those recorded at some Asian mega-cities and similar to those recorded at other South American cities. At the urban sites, hourly PM2.5 and PM1 concentrations showed a marked impact of road traffic emissions (at rush hours), with levels of coarse PM remaining elevated during daytime. At the suburban and rural sites, different PM daily patterns were registered according to the influence of the pollution plume from MCMA and also on local soil resuspension. The speciation studies showed that mineral matter accounted for 25–27% of bulk PM10 at the urban sites and a higher proportion (up to 43%) at the suburban and rural sites. This pattern is repeated in PM2.5, with 15% at urban and 28% at suburban and rural sites. Carbonaceous compounds accounted for a similar proportion at the urban sites (24–32% in PM10, and up to 37% in PM2.5), markedly reduced at the suburban and rural sites (17% in PM10, and 23–38% in PM2.5). The secondary inorganic aerosols accounted for 10–20% of bulk PM10 at urban, suburban, rural and industrial sites, with a higher proportion (40%) at the industrial background site. A relatively high proportion of nitrate in rural sites was present in the coarse fraction. Typically anthropogenic elements (As, Cr, Zn, Cu, Pb, Sn, Sb, Ba, among others) showed considerably high levels at the urban sites; however levels of particulate Hg and crustal trace elements (Rb, Ti, La, Sc, Ga) were generally higher at the suburban site. Principal component analysis identified three common factors: crustal, regional background and road traffic. Moreover, some specific factors were obtained for each site.


2017 ◽  
Vol 20 (2) ◽  
pp. 173-180 ◽  

In Mega-cities, such as Istanbul, urbanization causes heavy traffic. Air pollution, which originated from heavy traffic and industrialization, is one of the most important problems for the people who live in the populated cities. Due to both environmental and health effects, particulate matter problem always remains popular and serves an important research field. For this purpose, PM2.5 and PM10 measurements were taken in the megacity of Istanbul, close to Besiktas district by a low volume sampler at 5 different sampling stations. A total of 150 samples, 75 samples of PM2.5 and 75 samples of PM10 were collected from these sampling stations. Sampling period was between March 2009 and March 2010. Determination of particulate matter concentration was performed by the gravimetric method and elemental concentrations were analyzed with Inductively Coupled Plasma (ICP-OES). Principal Component Analysis (PCA) and Enrichment Factor (EF) analysis were applied to obtained elemental concentrations in order to identify the possible sources associated with the particulate matter. Four factors for PM2.5 and five factors for PM10 were determined by PCA method, which had variance contributions of 82.3% for PM2.5 and 83.5% for PM10. Acquired data showed that Istanbul ambient air was dominated by traffic emissions and crustal originated elements.


2012 ◽  
Vol 36 (1) ◽  
pp. 19-31
Author(s):  
Bilkis A Begum ◽  
Swapan K Biswas ◽  
M Nasiruddin

Black carbon and other selected trace elements concentrations in aerosol samples collected at   the Continuous Air Monitoring Station (CAMS) in Chittagong, the second largest city in Bangladesh, were investigated for possible source contributions. The particulate matter (PM) sampling was done from end of winter to middle of rainy season (February and July, 2007) using dichotomous sampler. The samples collected in two fractions of <2.5 ?m (fine) and 2.5 to 10 ?m (coarse) were analyzed for elemental concentrations by proton induced X-ray emission (PIXE), hydrogen by proton elastic scattering analysis (PESA), and black carbon by reflectance measurement. The elemental data sets together with black carbon were analyzed by principal component analysis method to identify the possible sources contributing to the mass concentration of coarse and fine particulate matter (FPM) fractions. The best solutions were found to be six and seven factors for coarse and fine fractions respectively, which could explain more than 90% of the variance in the data set. The sources were identified as biomass burning/brick kiln, soil dust, road dust, Zn source, Pb source, motor vehicle, CNG (compressed natural gas) vehicle and sea salt. It was found that in coarse fraction, the sea salt is mixed with Zn source and in fine fraction, the road dust factor is mixed with CNG vehicle source. DOI: http://dx.doi.org/10.3329/jbas.v36i1.10907 Journal of Bangladesh Academy of Sciences, Vol. 36, No. 1, 19-31, 2012


Author(s):  
Karen A. Katrinak ◽  
James R. Anderson ◽  
Peter R. Buseck

Aerosol samples were collected in Phoenix, Arizona on eleven dates between July 1989 and April 1990. Elemental compositions were determined for approximately 1000 particles per sample using an electron microprobe with an energy-dispersive x-ray spectrometer. Fine-fraction samples (particle cut size of 1 to 2 μm) were analyzed for each date; coarse-fraction samples were also analyzed for four of the dates.The data were reduced using multivariate statistical methods. Cluster analysis was first used to define 35 particle types. 81% of all fine-fraction particles and 84% of the coarse-fraction particles were assigned to these types, which include mineral, metal-rich, sulfur-rich, and salt categories. "Zero-count" particles, consisting entirely of elements lighter than Na, constitute an additional category and dominate the fine fraction, reflecting the importance of anthropogenic air pollutants such as those emitted by motor vehicles. Si- and Ca-rich mineral particles dominate the coarse fraction and are also numerous in the fine fraction.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 388
Author(s):  
Minghua Tang ◽  
Nicholas E. Weaver ◽  
Lillian M. Berman ◽  
Laura D. Brown ◽  
Audrey E. Hendricks ◽  
...  

Background: Research is limited in evaluating the mechanisms responsible for infant growth in response to different protein-rich foods; Methods: Targeted and untargeted metabolomics analysis were conducted on serum samples collected from an infant controlled-feeding trial that participants consumed a meat- vs. dairy-based complementary diet from 5 to 12 months of age, and followed up at 24 months. Results: Isoleucine, valine, phenylalanine increased and threonine decreased over time among all participants; Although none of the individual essential amino acids had a significant impact on changes in growth Z scores from 5 to 12 months, principal component heavily weighted by BCAAs (leucine, isoleucine, valine) and phenylalanine had a positive association with changes in length-for-age Z score from 5 to 12 months. Concentrations of acylcarnitine-C4, acylcarnitine-C5 and acylcarnitine-C5:1 significantly increased over time with the dietary intervention, but none of the acylcarnitines were associated with infant growth Z scores. Quantitative trimethylamine N-oxide increased in the meat group from 5 to 12 months; Conclusions: Our findings suggest that increasing total protein intake by providing protein-rich complementary foods was associated with increased concentrations of certain essential amino acids and short-chain acyl-carnitines. The sources of protein-rich foods (e.g., meat vs. dairy) did not appear to differentially impact serum metabolites, and comprehensive mechanistic investigations are needed to identify other contributors or mediators of the diet-induced infant growth trajectories.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 526
Author(s):  
Tianming Sun ◽  
Rui Li ◽  
Ya Meng ◽  
Yu Han ◽  
Hanyun Cheng ◽  
...  

Humic-like substances (HULIS) are of great interest due to their optical and chemical characteristics. In this study, a total of 180 samples of atmospheric particulate matter (PM) of different sizes were collected from summer 2018 to spring 2019, in order to analyze the size distribution, to investigate the seasonal variation and then to identify the key sources of HULIS. The annual mean concentration of HULIS in the total suspended particulates reached 5.12 ± 1.42 μg/m3. The HULIS concentration was extremely higher in winter (8.35 ± 2.06 μg/m3) than in autumn (4.88 ± 0.95 μg/m3), in summer (3.62 ± 1.68 μg/m3) and in spring (3.36 ± 0.99 μg/m3). The average annual ratio of water-soluble organic carbon (WSOC) to OC and the ratio of HULIS to WSOC reached 0.546 ± 0.092 and 0.56 ± 0.06, respectively. Throughout the whole year, the size distributions of WSOC and HULIS-C were relatively smooth. The peaks of WSOC appeared at 1.8~3.2 μm and 0.56~1.0 μm, while the peaks of HULIS-C were located at 3.2~5.6 μm, 1.0~1.8 μm and 0.18~0.32 μm. The distribution of the HULIS particle mode was similar in spring, summer and autumn, while there was a lower proportion of the coarse mode and a higher proportion of the condensation mode in winter. By using the comprehensive analysis of principal component analysis (PCA), air mass backward trajectories (AMBTs) and fire point maps, key sources of WSOC and HULIS in Shanghai were identified as biomass combustion (48.42%), coal combustion (17.49%), secondary formation (16.07%) and vehicle exhaust (5.37%). The remaining part might be contributed by crustal dust sources, marine sources and/or other possible sources. This study provides new insight into the characteristics and size distribution of HULIS in Shanghai, thereby providing a practical base for further modeling.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anne Abio ◽  
Pascal Bovet ◽  
Joachim Didon ◽  
Till Bärnighausen ◽  
Masood Ali Shaikh ◽  
...  

AbstractData on injury-related mortality are scarce in the African region. Mortality from external causes in the Seychelles was assessed, where all deaths are medically certified and the population is regularly enumerated. The four fields for underlying causes of death recorded were reviewed in the national vital statistics register. The age-standardised mortality rates were estimated (per 100,000 person-years) from external causes in 1989–1998, 1999–2008, and 2009–2018. Mortality rates per 100,000 person-years from external causes were 4–5 times higher among males than females, and decreased among males over the three 10-year periods (127.5, 101.4, 97.1) but not among females (26.9, 23.1, 26.9). The contribution of external causes to total mortality did not change markedly over time (males 11.6%, females 4.3% in 1989–2018). Apart from external deaths from undetermined causes (males 14.6, females 2.4) and “other unintentional injuries” (males 14.1, females 8.0), the leading external causes of death in 2009–2018 were drowning (25.9), road traffic injuries (18.0) and suicide (10.4) among males; and road traffic injuries (4.6), drowning (3.4) and poisoning (2.6) among females. Mortality from broad categories of external causes did not change consistently over time but rates of road traffic injuries increased among males. External causes contributed approximately 1 in 10 deaths among males and 1 in 20 among females, with no marked change in cause-specific rates over time, except for road traffic injuries. These findings emphasise the need for programs and policies in various sectors to address this large, but mostly avoidable health burden.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Caterina Durante ◽  
Marina Cocchi ◽  
Lisa Lancellotti ◽  
Laura Maletti ◽  
Andrea Marchetti ◽  
...  

The metal content in some samples of horse chestnut seeds (Aesculus hippocastanum) was monitored over time (years 2016–2019) considering the two most common and representative Mediterranean varieties: the pure species (AHP, which gives white flowers) and a hybrid one (AHH, which gives pink flowers). The selected elemental composition of the samples was determined by applying the Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) technique. Several samples obtained from different preliminary treatments of the peeled seeds were examined, such as: (i) floury samples (wild-type) mineralized with the wet method; (ii) the ashes of both AHP and AHH varieties; (iii) the fraction of total inorganic soluble salts (TISS). Furthermore, the hydroalcoholic crude extracts (as a tincture) were obtained according to the official Pharmacopoeia methods, and the relevant results were compared with those of a commercial sample, an herbal product-food supplement of similar characteristics. The main characteristics of this research work underline that the two botanical varieties give different distinctive characters, due to the Fe content (80.05 vs. 1.42 mg/100 g d.s., for AHP and AHH wild-type flour samples, respectively), along with K, Ca, Mn, Ni and Cu, which are more abundant in the AHP samples. Furthermore, the Principal Component Analysis (PCA) was applied to the experimental dataset in order to classify and discriminate the samples, in relation to their similar botanical origin, but different for the color of the bloom. These results can be useful for the traceability of raw materials potentially intended for the production of auxiliary systems of pharmacological interest.


Sign in / Sign up

Export Citation Format

Share Document