scholarly journals Basin-Scale Pollution Loads Analyzed Based on Coupled Empirical Models and Numerical Models

Author(s):  
Man Zhang ◽  
Xiaolong Chen ◽  
Shuihua Yang ◽  
Zhen Song ◽  
Yonggui Wang ◽  
...  

Pollutant source apportionment is of great significance for water environmental protection. However, it is still challenging to accurately quantify pollutant loads at basin-scale. Refined analytical methods combined the pollution discharge coefficient method (PDCM), field observation, and numerical model (Soil & Water Assessment Tool, SWAT) to make quantitative source appointment in the Tuojiang River, a key tributary of the upper Yangtze River. The chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (N-NH4+) were analyzed. Results showed that the urban sewage treatment plant point source has the largest contribution to COD, TN, and N-NH4+, while TP is mostly from the agricultural sources throughout the year. The total inflowing loads of pollution sources are significantly affected by rainfall. The overall pollution characteristics showed that pollutant loads present in different seasons are as follows: wet season > normal season > dry season. The month with the highest levels of pollutants is July in the wet season. Among the nine cities, the city that contributes the most COD, TN and N-NH4+, is Neijiang, accounting for about 25%, and the city that contributes the most TP is Deyang, accounting for 23%. Among the sub-basins, the Fuxi River subbasin and Qiuxihe River subbasin contribute the most pollutant loads. The technical framework adopted in this paper can be used to accurately identify the types, administrative regions and sub-basins of the main pollution sources in the watershed, which is conducive to management and governance of the environment.

Author(s):  
Christine M. DeLucia

This chapter follows Native and Euro-American communities in eastern Massachusetts through the twentieth and twenty-first centuries, examining a series of commemorations and counterprotests that unfolded in urbanizing areas and related sites. It analyzes how Bostonians’ conceptions of the city and modernity tended to exclude Native peoples from both, instead relegating them to the past—despite the presence of numerous “Urban Indians” in the growing metropolis, who were seeking employment and social opportunities. It considers a series of pageants and historical markers erected across the Commonwealth, as well as Native pushback against dominant Euro-American narratives about history, such as a 1970 gathering in Patuxet/Plymouth, Massachusetts that foregrounded Indigenous perspectives and inaugurated an annual National Day of Mourning. The chapter also details how tribal communities challenged plans to build a sewage treatment plant on Deer Island, on grounds considered intensely sensitive for their ties to the incarcerations of King Philip’s War. Finally, it illuminates a recent series of memorial journeys along the Charles River and Boston Harbor Islands in which mishoonash (Native dugout canoes) have played important roles in reconnecting Native descendants to the landscapes of ancestors, as well as providing avenues for Indigenous solidarities into the future.


2000 ◽  
Vol 41 (1) ◽  
pp. 97-104 ◽  
Author(s):  
J.C. Akunna ◽  
C. Jefferies

Field trials were carried out using two types of package units designed for the treatment of domestic sewage from individual households. One of the units was a commercially available rotating biological contactor (RBC) system. The other was a newly developed sequencing batch reactor (SBR) system. Trials were carried at the site of a local sewage treatment plant where degritted raw sewage from a combined sewerage network was fed to the two units for a period of four months. Both units produced good effluent quality, well below 20/30 (BOD/SS) during steady-state performance. However, shorter start-up time was observed with the SBR unit together with better effluent quality (up to BOD<10 mg/l and SS<15 mg/l). Furthermore, the SBR unit produced effluents with ammonia nitrogen and total phosphorus levels of 3 mg/l and 2 mg/l respectively, for influent levels that varied from 20 to 60 mg N-NH3/l and from 15 to 17 mg/l of total phosphorus. On the other hand, significant nutrient removal did not seem tohave occurred in the RBC unit. During testing to meet the requirements of British Standard (BS 6297), it was observed that the SBR can tolerate shockloads and periods following zero flow better than the RBC unit.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1125-1134 ◽  
Author(s):  
A. Durchschlag ◽  
L. Härtel ◽  
P. Hartwig ◽  
M. Kaselow ◽  
D. Kollatsch ◽  
...  

Wastewater treatment plants, combined sewerage, catchment areas, storage tanks and overflows have to be regarded together. Stormwater runoff results in discharges at combined sewer overflows and higher pollutant loads in the effluent of the treatment plants. Characteristics of catchment areas and sewerage, number and capacity of storage tanks and overflows determine the characteristics of the combined water influent of the treatment plant. The plant has to cope with a higher hydraulic load and often with higher pollutant loads at the beginning of combined water flows. Some of the effects are displacement of sludge to the secondary clarifier, higher solids concentrations in the effluent and high loads of ammonia nitrogen for the nitrifying reactor. To decide on bigger stormwater storages or improvement of the treatment plant all effects in the whole system have to be considered. This can only be done with dynamic models, although simulation of combined water flows still have to be improved.


2012 ◽  
Vol 512-515 ◽  
pp. 2842-2847
Author(s):  
Wei Yu ◽  
Wei Teng Li ◽  
Mei Juan Huo

In this paper, the main public buildings, Lang fang City, Hebei province, the research summary and statistical power to the city building a sewage treatment plant sewage source heat pump system operating on-site monitoring, the monitoring results of economic analysis with traditional heating methods from the initial investment and operation of both comprehensive economic analysis and comparison.


2014 ◽  
Vol 1079-1080 ◽  
pp. 480-483
Author(s):  
Li Wang

The graduation design topic for a sewage treatment plant processesdesign - inverted AAO process in durian. Main task is tantamount to designaccording to the requirement of the nature of the city sewage, sewage, scalepreliminary design to complete sewage treatment plant and single processing structure design.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zarimah Mohd Hanafiah ◽  
Wan Hanna Melini Wan Mohtar ◽  
Hassimi Abu Hasan ◽  
Henriette Stokbro Jensen ◽  
Anita Klaus ◽  
...  

Abstract The fluctuation of domestic wastewater characteristic inhibits the current conventional microbial-based treatment. The bioremediation fungi has received attention and reported to be an effective alternative to treat industrial wastewater. Similar efficient performance is envisaged for domestic wastewater whereby assessed performance of fungi for varying carbon-to-nitrogen ratios in domestic wastewater is crucial. Thus, the performance of pre-grown wild-Serbian Ganoderma lucidum mycelial pellets (GLMPs) was evaluated on four different synthetic domestic wastewaters under different conditions of initial pH (pH 4, 5, and 7) and chemical oxygen demand (COD) to nitrogen (COD/N) ratio of 3.6:1, 7.1:1, 14.2:1, and 17.8:1 (C3.6N1, C7.1N1, C14.2N1, and C17.8N1). The COD/N ratios with a constant concentration of ammonia–nitrogen (NH3–N) were chosen on the basis of the urban domestic wastewater characteristics sampled at the inlet basin of a sewage treatment plant (STP). The parameters of pH, COD, and NH3–N were measured periodically during the experiment. The wild-Serbian GLMPs efficiently removed the pollutants from the synthetic sewage. The COD/N ratio of C17.8N1 wastewater had the best COD and NH3–N removal, as compared to the lower COD/N ratio, and the shortest treatment time was obtained in an acidic environment at pH 4. The highest percentage for COD and NH3–N removal achieved was 96.0% and 93.2%, respectively. The results proved that the mycelium of GLMP has high potential in treating domestic wastewater, particularly at high organic content as a naturally sustainable bioremediation system.


2020 ◽  
Vol 165 ◽  
pp. 02026
Author(s):  
Lintang Yu ◽  
Zhongya Tang ◽  
Li Feng ◽  
Junjie Ji

As the raising of environmental protection requirements, the outlet water (tailwater) quality standards of many sewage treatment plants need to be further improved. This paper mainly introduces the advanced treatment of tailwater from sewage treatment plant of vein industrial park by artificial ecological lake. The designed processing amount of this project was 1300 m3/d, the inlet water COD was 30 mg/L, the ammonia nitrogen content was 1.5 mg/L, and the outlet water main index reached the surface water environment quality standard (GB3838-2002) Ⅲ class water quality standard, which had improved the outlet water (tailwater) quality of sewage treatment plants and improved the regional water environment quality. By constructing an artificial landscape lake, the resource utilization of tailwater can be realized.


2012 ◽  
Vol 518-523 ◽  
pp. 406-410 ◽  
Author(s):  
Yun Hao ◽  
Xiu Guang Jiang ◽  
Qing Tian ◽  
Ai Yin Chen ◽  
Bao Ling Ma

In this study, a scientific method which can be used to improve nitrification process at low temperature in the sewage treatment plant was introduced. The activated sludge samples were taken from aeration tank of the sewage treatment plant when the outside temperature was below 0°C (water temperature below 12 °C). Five kinds of nitrobacteria strains with cold-resistance and higher activity of ammonia degradation were isolated from aeration tanks. The physiological properties showed the five strains were identified into Sphingobacteriaceae、Rhodanobacter sp.、Pseudomonas sp.、Pandoraea sp. and Perlucidibaca piscinae. All of the strains could convert ammonia-nitrogen or NO2- into NO3- in the medium at 10°C. The ammonia and nitrate removal efficiency could be reached 80.9% and 80.3% respectively. Comparing to the unvaccinated one, the removal efficiency can be increased by 50%, which proved the isolated nitrobacteria could be applied to biological nitrification process of sewage treatment at low-temperature.


2013 ◽  
Vol 409-410 ◽  
pp. 182-186
Author(s):  
Jun Yin ◽  
Jun Xiang Wang ◽  
Jia Ni Li ◽  
Jing Yi Cui

Based on the problem which is water quality instability and high energy consumption in the running of modified A2/O system in Changchun northern sewage treatment plant, we established the optimum parameters and optimized the operation conditions to provide technical support for the stable operation of the wastewater treatment plant by analyzing effect of the system in different conditions Test results showed the best dissolved oxygen concentration in the end of the aerobic tank, sludge recycling ratio and inner recycling ratio should be chosen 1.5~2.5mg/L, 80% and 180%. The operation results with optimal operation conditions showed that COD, ammonia nitrogen, SS, TN and TP removal rate were 89.07%, 80.44%, 95.27%, 61.09% and 89.88%. The process system effect is stable and effluent can satisfy the sewage discharged standards.


2020 ◽  
Vol 6 (11) ◽  
pp. 126-131
Author(s):  
P. Murodov ◽  
O. Amirov ◽  
P. Khuzhaev

The influence of the discharged treated wastewater on the ecology of the Kafirnigan River is considered. The data on the current state of sewage treatment facilities in the city of Dushanbe are given and an assessment of the environmental efficiency of these treatment facilities is given. Preliminary calculations of costs for the construction of a new sewage treatment plant in Dushanbe have been made. The article is devoted to the current problem of cleaning storm sewers. It should be noted that storm water drainage, like wastewater, has a negative impact on the environment. Before the wastewater is disposed of, it is necessary to treat it in a special way, subjecting it to treatment of varying degrees and depths.


Sign in / Sign up

Export Citation Format

Share Document