scholarly journals To Drive or to Be Driven? The Impact of Autopilot, Navigation System, and Printed Maps on Driver’s Cognitive Workload and Spatial Knowledge

2021 ◽  
Vol 10 (10) ◽  
pp. 668
Author(s):  
Iuliia Brishtel ◽  
Thomas Schmidt ◽  
Igor Vozniak ◽  
Jason Raphael Rambach ◽  
Bruno Mirbach ◽  
...  

The technical advances in navigation systems should enhance the driving experience, supporting drivers’ spatial decision making and learning in less familiar or unfamiliar environments. Furthermore, autonomous driving systems are expected to take over navigation and driving in the near future. Yet, previous studies pointed at a still unresolved gap between environmental exploration using topographical maps and technical navigation means. Less is known about the impact of the autonomous system on the driver’s spatial learning. The present study investigates the development of spatial knowledge and cognitive workload by comparing printed maps, navigation systems, and autopilot in an unfamiliar virtual environment. Learning of a new route with printed maps was associated with a higher cognitive demand compared to the navigation system and autopilot. In contrast, driving a route by memory resulted in an increased level of cognitive workload if the route had been previously learned with the navigation system or autopilot. Way-finding performance was found to be less prone to errors when learning a route from a printed map. The exploration of the environment with the autopilot was not found to provide any compelling advantages for landmark knowledge. Our findings suggest long-term disadvantages of self-driving vehicles for spatial memory representations.

Author(s):  
Milan Džunda ◽  
Peter Dzurovčin ◽  
Ivan Koblen ◽  
Stanislav Szabo ◽  
Edina Jenčová ◽  
...  

Accurate navigation systems allow us to optimize the trajectory of flying objects and thus solve environmental problems in aviation and their impact on public health. In this paper, we present one of the methods of assessment of accuracy and resistance to interference of distance-measuring equipment (DME). By using computer technology, the method enables us to determine the potential but also the real error measuring the distance of the flying object from DME. The credibility of the respective results of the solution on the task of DME optimal rangefinder synthesis depends on the accuracy of the previous data used, i.e., mathematical models of the respective flying objects flight dynamics, useful signals, and their parameters and interference. DME systems have an impact on air transport safety, and therefore the impact of interference on their operation must be investigated.


2019 ◽  
Vol 13 (4) ◽  
pp. 279-289 ◽  
Author(s):  
Alexandra Avram ◽  
Volker Schwieger ◽  
Noha El Gemayel

Abstract Current trends like Autonomous Driving (AD) increase the need for a precise, reliable, and continuous position at high velocities. In both natural and man-made environments, Global Navigation Satellite System (GNSS) signals suffer challenges such as multipath, attenuation, or loss-of-lock. As Highway Assist and Highway Pilot are AD next steps, multipath knowledge is necessary for this typical user-case and kinematic situations. This paper presents a multipath performance analysis for GPS and Galileo satellites in static, slow, and high kinematic scenarios. The data is provided from car test-drives in both controlled and unrestricted, near-natural environments. The Code-Minus-Carrier (CMC) and cycle-slip implementations are validated with measurement data from consecutive days. Multipath statistical models based on satellite elevation are evaluated for the three investigated scenarios. Static models derived from the car setup measurements for GPS L1, L2 and Galileo E1 and E5b show a good agreement with a state-of-the-art model as well as the enhanced Galileo signals performance. Slow kinematic multipath results in a controlled environment showed an improvement for both navigation systems compared to the static measurements at the same place. This result is confirmed by static and slow kinematic multipath simulations with the same GNSS receiver. Post-processing analysis on highway measurements revealed a bigger multipath bias, compared to the open-sky static and slow kinematic measurement campaigns. Although less critical as urban or rural, this indicates the presence of multipath in this kind of environment as well. The impact of different parameters, including receiver architecture and Signal-to-noise ratio (SNR) are analyzed and discussed. Differential position (DGNSS) based on code is computed for each epoch and compared against GNSS/INS integrated position for all three measurement campaigns. The most significant 3D absolute error occurs where the greatest multipath envelope is found.


2021 ◽  
Vol 8 (2) ◽  
pp. 205395172110498
Author(s):  
Sam Hind

In this article, I consider how the redesign of vehicle dashboards has restructured car-related data processes. I do so by charting the emergence of two such processes enabled by the redesign of vehicle dashboards: firstly, the transformation of ‘geodata’ into ‘navigational data’ with the integration of voice-activated navigation systems into vehicle dashboards, and secondly, the transformation of ‘vehicle data’ into ‘driving data’ in the convergence, and customization, of dashboard features and functionality. Both transformations are enabled through strategic design decisions, persuading drivers to participate in novel practices they might otherwise not. Firstly, in that voice-activation is depicted as a seamless, unmediated interface between the normal, natural speech of a driver, and the vehicle itself. Secondly, through the strategy of control, the driver is persuaded to believe they have full(er) customizable power within, and of, Firstly, in that voice-activation is depicted as a seamless, unmediated interface between the normal, natural speech of a driver, and the vehicle itself. Secondly, through the strategy of control, the driver is persuaded to believe they have full(er) customizable power within, and of, the vehicle. The systems discussed here – a voice-activated navigation system built on the What3words platform, and a ‘widescreen’ dashboard in a range of Mercedes-Benz vehicles – are representative of broader efforts within the automotive industry to cultivate a newly ‘datafied’ driving experience.


2019 ◽  
Vol 113 (2) ◽  
pp. 140-155 ◽  
Author(s):  
Nicholas A. Giudice ◽  
William E. Whalen ◽  
Timothy H. Riehle ◽  
Shane M. Anderson ◽  
Stacy A. Doore

Introduction: This article describes an evaluation of MagNav, a speech-based, infrastructure-free indoor navigation system. The research was conducted in the Mall of America, the largest shopping mall in the United States, to empirically investigate the impact of memory load on route-guidance performance. Method: Twelve participants who are blind and 12 age-matched sighted controls participated in the study. Comparisons are made for route-guidance performance between use of updated, real-time route instructions (system-aided condition) and a system-unaided (memory-based condition) where the same instructions were only provided in advance of route travel. The sighted controls (who navigated under typical visual perception but used the system for route guidance) represent a best case comparison benchmark with the blind participants who used the system. Results: Results across all three test measures provide compelling behavioral evidence that blind navigators receiving real-time verbal information from the MagNav system performed route travel faster (navigation time), more accurately (fewer errors in reaching the destination), and more confidently (fewer requests for bystander assistance) compared to conditions where the same route information was only available to them in advance of travel. In addition, no statistically reliable differences were observed for any measure in the system-aided conditions between the blind and sighted participants. Posttest survey results corroborate the empirical findings, further supporting the efficacy of the MagNav system. Discussion: This research provides compelling quantitative and qualitative evidence showing the utility of an infrastructure-free, low-memory demand navigation system for supporting route guidance through complex indoor environments and supports the theory that functionally equivalent navigation performance is possible when access to real-time environmental information is available, irrespective of visual status. Implications for designers and practitioners: Findings provide insight for the importance of developers of accessible navigation systems to employ interfaces that minimize memory demands.


10.29007/srn7 ◽  
2020 ◽  
Author(s):  
Prashant Pandey ◽  
Pierre Guy ◽  
Kelly Lefaivre ◽  
Antony J. Hodgson

Surgical navigation can be used for complex orthopaedic procedures, such as iliosacral screw fix- ations, to achieve accurate and efficient results [11]. Although there have been studies studying the impact of navigation systems on surgical outcomes [6, 3], we are not aware of any studies that have quantified the effect of how information regarding the surgical navigation scene is displayed to surgeons on conventional monitors. However, the display of information can have a measurable effect on both accuracy and time required to perform the navigated surgery, as the surgical scene can be presented in many different formats [9]. Optimizing surgical accuracy potentially helps improves patient safety by reducing screw malplacement [11], while optimiz- ing time efficiency reduces opportunity cost [1]. Therefore, we designed a study to determine the optimal visualizations for performing navigated pelvic screw insertions. The findings of this study can be used to more systematically design visualization components of a navigation system.


2012 ◽  
Vol 19 (2) ◽  
pp. 185-197
Author(s):  
Sergey Yakushin

Abstract Errors of INS output parameters lead to a positive feedback effect of errors and eventually to an even more dramatic increase in system errors. To reduce the impact of this problem on the error output parameters of INS, in this paper, we propose and study a new concept of constructing algorithms for autonomous INS, which is called as synergetic concept. In the paper the synergetic concept of inertial system’s algorithm is presented and investigated by implementing its into strapdown inertial navigation system (SDINS).


2019 ◽  
Vol 1 ◽  
pp. 1-2 ◽  
Author(s):  
Wangshu Wang ◽  
Haosheng Huang ◽  
Hao Lyu ◽  
Georg Gartner

<p><strong>Abstract.</strong> Recent years have witnessed the rapid development of navigation systems. They gradually become the default way of navigating in our daily life. Despite benefiting from their convenience, we may be negatively influenced by them (Parush et al. 2007). Current navigation systems usually draw too much of users' attention to the mobile devices, which leads to users’ lacking interaction with the environment. It is often the case that people easily forget travelled route and get lost without navigation systems (Reilly et al. 2008). Empirical study shows that by dividing attention, navigation systems impair users’ spatial memory, and thus impact their navigation skills (Gardony et al. 2013). Since a higher engagement with the environment can improve users’ spatial knowledge acquisition without decreasing efficiency (Brügger et al. 2017), navigation systems should incorporate important environmental features.</p><p>As objects of visual, cognitive or structural importance (Sorrows &amp; Hirtle 1999), landmarks have been extensively studied, and considered as an important environmental feature to be incorporated into navigation systems (Nuhn &amp; Timpf 2018, Richter 2017, Duckham et al. 2010, Raubal &amp; Winter 2002). They serve as references to provide users with more natural and pleasant navigating experience (Richter &amp; Winter 2014). However, most of landmark-related studies are in outdoor environment. Although researchers have attempted to classify and assess indoor landmarks (Ohm 2014, Viaene 2014), it is still very difficult to determine suitable ones. As a subset of semantic indoor landmarks, existing navigational aids (e.g. signs and floor plans) are designed to assist navigation. Among them, signs are most preferred by users (Wang et al. 2017). Being the signs that give necessary information to route users to possible destinations, directional signs contribute most to wayfinding (Gibson 2009). With route information explicitly presented by them, they are relevant environmental features to be incorporated into indoor navigation systems.</p><p>In this study, we therefore propose to incorporate directional signs into indoor navigation systems, in order to guide users’ attention back to the environment, to facilitate their spatial learning and improve their spatial knowledge acquisition.</p><p>We incorporated directional signs into a proof-of-concept indoor navigation system. First, we integrated directional signs and their semantics into a graph-based model. A directional sign was modelled as a node. Each destination on the sign was linked with the sign by an edge. In order to differentiate it from the normal edge, it was marked as semantic edge. Thus, the semantics of the sign was modelled directly into the graph, instead of being stored as attributes in a previous version of our study (Wang &amp; Gartner 2018). Then, a top-K shortest path algorithm was employed to find candidate routes (Yen 1971). In the end, the route with the largest coverage of semantic edges was suggested to the user. The users would then be explicitly guided to follow the directional signs in the environment.</p><p>In the next step, we will evaluate the efficiency and effectiveness of the proposed navigation system by an empirical study with human subjects. Within the experiment, we will also investigate on whether this kind of guidance can succeed in drawing users’ attention back to the environment and support their spatial knowledge acquisition.</p>


2014 ◽  
Vol 522-524 ◽  
pp. 1192-1196 ◽  
Author(s):  
Yue Wang ◽  
Wang Xun Zhang ◽  
Qun Li

Satellite navigation systems are running in complex electromagnetic and space environment. There is few research studies the threat and protect ability of navigation system. Lacking of qualitative data makes it difficult to analyse the security of it. In this paper, we applied Functional Dependency Network Analysis (FDNA) to solve this problem. FDNA studies how the impact caused directly by attack spreads in the overall system through the dependencies between function nodes of system. Then we are able to assess the operability of the application of navigation system. This method avoid considerable statistic experiments. Make full use of principle data. Provide constructive decision making comments.


2010 ◽  
Vol 6 (3) ◽  
pp. 60
Author(s):  
Richard Schilling ◽  

Atrial fibrillation (AF) is linked to an increased risk of adverse cardiovascular events. While rhythm control with antiarrhythmic drugs (AADs) is a common strategy for managing patients with AF, catheter ablation may be a more efficacious and safer alternative to AADs for sinus rhythm control. Conventional catheter ablation has been associated with challenges during the arrhythmia mapping and ablation stages; however, the introduction of two remote catheter navigation systems (a robotic and a magnetic navigation system) may potentially overcome these challenges. Initial clinical experience with the robotic navigation system suggests that it offers similar procedural times, efficacy and safety to conventional manual ablation. Furthermore, it has been associated with reduced fluoroscopy exposure to the patient and the operator as well as a shorter fluoroscopy time compared with conventional catheter ablation. In the future, the remote navigation systems may become routinely used for complex catheter ablation procedures.


Author(s):  
Gaojian Huang ◽  
Christine Petersen ◽  
Brandon J. Pitts

Semi-autonomous vehicles still require drivers to occasionally resume manual control. However, drivers of these vehicles may have different mental states. For example, drivers may be engaged in non-driving related tasks or may exhibit mind wandering behavior. Also, monitoring monotonous driving environments can result in passive fatigue. Given the potential for different types of mental states to negatively affect takeover performance, it will be critical to highlight how mental states affect semi-autonomous takeover. A systematic review was conducted to synthesize the literature on mental states (such as distraction, fatigue, emotion) and takeover performance. This review focuses specifically on five fatigue studies. Overall, studies were too few to observe consistent findings, but some suggest that response times to takeover alerts and post-takeover performance may be affected by fatigue. Ultimately, this review may help researchers improve and develop real-time mental states monitoring systems for a wide range of application domains.


Sign in / Sign up

Export Citation Format

Share Document