scholarly journals Global Transcriptome Analysis of Brown Adipose Tissue of Diet-Induced Obese Mice

2018 ◽  
Vol 19 (4) ◽  
pp. 1095 ◽  
Author(s):  
Jingyi Cao ◽  
Qi Zhu ◽  
Lin Liu ◽  
Bradley Glazier ◽  
Benjamin Hinkel ◽  
...  
2010 ◽  
Vol 138 (5) ◽  
pp. S-754 ◽  
Author(s):  
Nicholas Stylopoulos ◽  
Xiao B. Zhang ◽  
Anna-Liisa Brownell ◽  
Lee M. Kaplan

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1703-1703
Author(s):  
Yang Yang ◽  
Xinyun Xu ◽  
Katie Graham ◽  
Ahmed Bettaieb ◽  
Christophe Morisseau ◽  
...  

Abstract Objectives Brown adipose tissue (BAT), responsible for energy expenditure through nonshivering thermogenesis, has emerged as a novel target for obesity treatment and prevention. Soluble epoxide hydrolase (sEH), encoded by Ephx2 gene, is a cytosolic enzyme that converts epoxy fatty acids (EpFAs) that are produced by cytochrome P-450 enzymes from polyunsaturated fatty acids into less active diols. Pharmacological inhibitors of sEH, such as trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido] cyclohexyloxy} benzoic acid (t-TUCB), have been shown to be beneficial for chronic diseases by inhibiting the degradation of EpFAs. We have previously shown that t-TUCB dose-dependently promotes brown adipogenesis in vitro. This study investigated the therapeutic effects of t-TUCB on BAT activation in diet-induced obese mice. Methods Male C57BL6/J mice were fed a high-fat diet (60% kcal from fat) for 8 weeks followed by random assignment into either the control or t-TUCB group (n = 10 per group) to receive either the vehicle control or t-TUCB (3 mg/kg/day) via osmotic minipump delivery at the subcutaneous area near the interscapular BAT for 6 weeks. Bodyweight and food intake, glucose and insulin tolerance tests, cold tolerance tests, and indirect calorimetry were measured before the mice were euthanized for further biochemical analysis. Results sEH inhibition by t-TUCB in the obese mice did not change body weight, fat pad weight, food intake, fasting blood glucose, glucose and insulin tolerance, or cold tolerance, but significantly decreased blood triglyceride levels and increased heat production during both day and night. Moreover, t-TUCB significantly increased protein expression of brown marker gene PGC-1alpha and lipid droplet-associated protein perilipin (PLIN), but not uncoupling protein 1 (UCP1), in the interscapular BAT of diet-induced obese mice. Conclusions Our results suggest that sEH pharmacological inhibition may be beneficial for BAT activation by increasing mitochondrial biogenesis and lipolysis in the BAT. Further studies using the sEH inhibitors and/or EpFA generating diets for obesity treatment and prevention are warranted. Funding Sources The work was supported by NIH 1R15DK114790–01A1 (to L.Z.), K99DK100736 and R00DK100736 (to A.B.), R15AT008733 (to S.W.), R35 ES030443 and P42ES004699 (to B.D.H).


Diabetologia ◽  
2011 ◽  
Vol 54 (12) ◽  
pp. 3121-3131 ◽  
Author(s):  
M. Bajzer ◽  
M. Olivieri ◽  
M. K. Haas ◽  
P. T. Pfluger ◽  
I. J. Magrisso ◽  
...  

Author(s):  
Mandana Pahlavani ◽  
Nadeeja N. Wijayatunga ◽  
Nishan S. Kalupahana ◽  
Latha Ramalingam ◽  
Preethi H. Gunaratne ◽  
...  

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Tao Yuan ◽  
Juan Li ◽  
Wei-Gang Zhao ◽  
Wei Sun ◽  
Shuai-Nan Liu ◽  
...  

Abstract Background To investigate effects of metformin on the regulation of proteins of white adipose tissue (WAT) and brown adipose tissue (BAT) in obesity and explore the underlying mechanisms on energy metabolism. Methods C57BL/6J mice were fed with normal diet (ND, n = 6) or high-fat diet (HFD, n = 12) for 22 weeks. HFD-induced obese mice were treated with metformin (MET, n = 6). After treatment for 8 weeks, oral glucose tolerance test (OGTT) and hyperinsulinemic–euglycemic clamp were performed to evaluate the improvement of glucose tolerance and insulin sensitivity. Protein expressions of WAT and BAT in mice among ND, HFD, and MET group were identified and quantified with isobaric tag for relative and absolute quantification (iTRAQ) coupled with 2D LC–MS/MS. The results were analyzed by MASCOT, Scaffold and IPA. Results The glucose infusion rate in MET group was increased significantly compared with HFD group. We identified 4388 and 3486 proteins in WAT and BAT, respectively. As compared MET to HFD, differential expressed proteins in WAT and BAT were mainly assigned to the pathways of EIF2 signaling and mitochondrial dysfunction, respectively. In the pathways, CPT1a in WAT, CPT1b and CPT2 in BAT were down-regulated by metformin significantly. Conclusions Metformin improved the body weight and insulin sensitivity of obese mice. Meanwhile, metformin might ameliorate endoplasmic reticulum stress in WAT, and affect fatty acid metabolism in WAT and BAT. CPT1 might be a potential target of metformin in WAT and BAT.


Life Sciences ◽  
1983 ◽  
Vol 32 (18) ◽  
pp. 2123-2130 ◽  
Author(s):  
Sylvette Bas ◽  
Elisabeth Imesch ◽  
Daniel Ricquier ◽  
Françoise Assimacopoulos-Jeannet ◽  
Josiane Seydoux ◽  
...  

1982 ◽  
Vol 60 (9) ◽  
pp. 910-916 ◽  
Author(s):  
Nicole Bégin-Heick ◽  
H. M. C. Heick

The activation of brown adipose tissue adenylate cyclase by catecholamines was studied in genetically obese (ob/ob) and lean mice. In obese mice, the maximum activation of the enzyme by several β-adrenergic agonists was only two-thirds that in lean mice and, as an activator, noradrenaline was only one-eighth as potent. The adenylate cyclase was also less responsive to guanine nucleotides. In these respects, the defect in catecholamine-stimulated adenylate cyclase was similar in both white and brown adipose tissue of the obese mouse. The enzyme in brown adipose tissue differed from that in white adipose tissue in its sensitivity to other β-adrenergic agonists and in its requirement for Mg2+. It is suggested that this abnormal catecholamine-activated adenylate cyclase in brown adipose tissue may be related to the thermoregulatory defect of the obese mouse and hence may contribute to the obesity syndrome.


Sign in / Sign up

Export Citation Format

Share Document