scholarly journals Exploiting PLGA-Based Biocompatible Nanoparticles for Next-Generation Tolerogenic Vaccines against Autoimmune Disease

2019 ◽  
Vol 20 (1) ◽  
pp. 204 ◽  
Author(s):  
Giuseppe Cappellano ◽  
Cristoforo Comi ◽  
Annalisa Chiocchetti ◽  
Umberto Dianzani

Tolerogenic vaccines are aimed at inhibiting antigen-specific immune responses. Antigen-loaded nanoparticles (NPs) have been recently emerged as ideal tools for tolerogenic vaccination because their composition, size, and capability of loading immunomodulatory molecules can be readily exploited to induce peripheral tolerance. Among polymeric NPs, poly(lactic-co-glycolic acid) (PLGA) NPs have the advantage of currently holding approval for several applications in drug delivery, diagnostics, and other clinical uses by the Food and Drug Administration (FDA). PLGA-NPs are non-toxic and display excellent biocompatibility and biodegradability properties. Moreover, surface functionalization may improve their interaction with biological materials, thereby optimizing targeting and performance. PLGA-NPs are the most extensively studied in pre-clinical model in the field of tolerogenic vaccination. Thus, this review describes their potential applications in the treatment of autoimmune diseases.

2020 ◽  
Vol 60 (1) ◽  
pp. 371-390 ◽  
Author(s):  
Anton M. Jetten ◽  
Donald N. Cook

Retinoic acid–related orphan receptor γt (RORγt) functions as a ligand-dependent transcription factor that regulates multiple proinflammatory genes and plays a critical role in several inflammatory and autoimmune diseases. Various endogenous and synthetic RORγ (inverse) agonists have been identified that regulate RORγ transcriptional activity, including many cholesterol intermediates and oxysterols. Changes in cholesterol biosynthesis and metabolism can therefore have a significant impact on the generation of oxysterol RORγ ligands and, consequently, can control RORγt activity and inflammation. These observations contribute to a growing literature that connects cholesterol metabolism to the regulation of immune responses and autoimmune disease. Loss of RORγ function in knockout mice and in mice treated with RORγ inverse agonists results in reduced production of proinflammatory cytokines, such as IL-17A/F, and increased resistance to autoimmune disease in several experimental rodent models. Thus, RORγt inverse agonists might provide an attractive therapeutic approach to treat a variety of autoimmune diseases.


RSC Advances ◽  
2019 ◽  
Vol 9 (70) ◽  
pp. 41074-41082 ◽  
Author(s):  
Chunqing Niu ◽  
Xiang Li ◽  
Yiyu Wang ◽  
Xinyu Liu ◽  
Jian Shi ◽  
...  

Enzymatically cross-linked PVA/SF semi-IPN hydrogels with tunable pore structure have potential applications in sustained release of hydrophobic drug.


2021 ◽  
Vol 17 (7) ◽  
pp. 1320-1329
Author(s):  
Thaís Dolzany de Oliveira ◽  
Luiz R. Travassos ◽  
Denise Costa Arruda ◽  
Dayane Batista Tada

Nanoparticles (NPs) are a promising strategy for delivering drugs to specific sites because of their tunable size and surface chemistry variety. Among the availablematerials, NPs prepared with biopolymers are of particular interest because of their biocompatibility and controlled release of encapsulated drugs. Poly lactic-co-glycolic acid (PLGA) is one of the most widely used biopolymers in biomedical applications. In addition to material choice modulation of the interaction between NPs and biological systems is essential for the safety and effective use of NPs. Therefore, this work focused on evaluating different surface functionalization strategies to promote cancer cell uptake and intracellular targeting of PLGA NPs. Herein, cell-penetrating peptides (CPPs) were shown to successfully drive PLGA NPs to the mitochondria and nuclei. Furthermore, the functionalization of PLGA NPs with peptide AC-1001 H3 (GQYGNLWFAY) was proven to be useful for targeting actin filaments. The PLGA NPs cell internalization mechanism by B16F10-Nex2 cells was identified as caveolae-mediated endocytosis, which could be inhibited by the presence of methyl-β-cyclodextrin. Notably, when peptide C (CVNHPAFAC) was used to functionalize PLGA NPs, none of the tested inhibitors could avoid cell internalization of PLGA NPs. Therefore, we suggest this peptide as a promising surface modification agent for enhancing drug delivery to cancer cells. Finally, PLGA NPs showed slow release kinetics and low cytotoxic profile, which, combined with the surface functionalization strategies addressed in this study, highlight the potential of PLGA NPs as a drug delivery platform for improving cancer therapy.


2004 ◽  
Vol 200 (3) ◽  
pp. 273-276 ◽  
Author(s):  
Clare Baecher-Allan ◽  
David A. Hafler

Although central and peripheral tolerance are important for the regulation of human immune responses to self- and microbial antigens, an important role of suppressor CD4+ CD25+ T cells is suggested from the recent investigations of human autoimmune diseases and HIV. These new data provide increasing evidence that altered function of CD4+ CD25+ T cells may be an important factor in a wide range of human inflammatory and infectious diseases.


2020 ◽  
Vol 48 (W1) ◽  
pp. W488-W493 ◽  
Author(s):  
Aleksandr Ianevski ◽  
Anil K Giri ◽  
Tero Aittokallio

Abstract SynergyFinder (https://synergyfinder.fimm.fi) is a stand-alone web-application for interactive analysis and visualization of drug combination screening data. Since its first release in 2017, SynergyFinder has become a widely used web-tool both for the discovery of novel synergistic drug combinations in pre-clinical model systems (e.g. cell lines or primary patient-derived cells), and for better understanding of mechanisms of combination treatment efficacy or resistance. Here, we describe the latest version of SynergyFinder (release 2.0), which has extensively been upgraded through the addition of novel features supporting especially higher-order combination data analytics and exploratory visualization of multi-drug synergy patterns, along with automated outlier detection procedure, extended curve-fitting functionality and statistical analysis of replicate measurements. A number of additional improvements were also implemented based on the user requests, including new visualization and export options, updated user interface, as well as enhanced stability and performance of the web-tool. With these improvements, SynergyFinder 2.0 is expected to greatly extend its potential applications in various areas of multi-drug combinatorial screening and precision medicine.


2020 ◽  
Vol 5 (2) ◽  
pp. 439-456
Author(s):  
Jenny L. Pierce

Purpose This review article provides an overview of autoimmune diseases and their effects on voice and laryngeal function. Method A literature review was conducted in PubMed. Combinations of the following keywords were used: “autoimmune disease and upper airway,” “larynx,” “cough,” “voice,” “dysphonia,” and “dyspnea.” Precedence was given to articles published in the past 10 years due to recent advances in this area and to review articles. Ultimately, 115 articles were included for review. Results Approximately 81 autoimmune diseases exist, with 18 of those highlighted in the literature as having laryngeal involvement. The general and laryngeal manifestations of these 18 are discussed in detail, in addition to the clinical implications for a laryngeal expert. Conclusions Voice, breathing, and cough symptoms may be an indication of underlying autoimmune disease. However, these symptoms are often similar to those in the general population. Appropriate differential diagnosis and timely referral practices maximize patient outcomes. Guidelines are provided to facilitate correct diagnosis when an autoimmune disease is suspected.


2020 ◽  
Vol 26 (42) ◽  
pp. 5488-5502 ◽  
Author(s):  
Yub Raj Neupane ◽  
Asiya Mahtab ◽  
Lubna Siddiqui ◽  
Archu Singh ◽  
Namrata Gautam ◽  
...  

Autoimmune diseases are collectively addressed as chronic conditions initiated by the loss of one’s immunological tolerance, where the body treats its own cells as foreigners or self-antigens. These hay-wired antibodies or immunologically capable cells lead to a variety of disorders like rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, multiple sclerosis and recently included neurodegenerative diseases like Alzheimer’s, Parkinsonism and testicular cancer triggered T-cells induced autoimmune response in testes and brain. Conventional treatments for autoimmune diseases possess several downsides due to unfavourable pharmacokinetic behaviour of drug, reflected by low bioavailability, rapid clearance, offsite toxicity, restricted targeting ability and poor therapeutic outcomes. Novel nanovesicular drug delivery systems including liposomes, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes and biologically originated exosomes have proved to possess alluring prospects in supporting the combat against autoimmune diseases. These nanovesicles have revitalized available treatment modalities as they are biocompatible, biodegradable, less immunogenic and capable of carrying high drug payloads to deliver both hydrophilic as well as lipophilic drugs to specific sites via passive or active targeting. Due to their unique surface chemistry, they can be decorated with physiological or synthetic ligands to target specific receptors overexpressed in different autoimmune diseases and can even cross the blood-brain barrier. This review presents exhaustive yet concise information on the potential of various nanovesicular systems as drug carriers in improving the overall therapeutic efficiency of the dosage regimen for various autoimmune diseases. The role of endogenous exosomes as biomarkers in the diagnosis and prognosis of autoimmune diseases along with monitoring progress of treatment will also be highlighted.


2020 ◽  
Vol 26 ◽  
Author(s):  
Ritu Mishra ◽  
Swati Gupta

Background: Rheumatoid arthritis (RA) is the most common occurring progressive, autoimmune disease, affecting 1% of the population and the ratio of affected women is three times as compared to men in most developing countries. Clinical manifestations of RA are the presence of anti-citrullinated protein antibody (ACPA) and rheumatoid factor (RF) in blood, tendered joints and soreness of the muscles. Some other factors which may lead to chronic inflammation are genetic and environmental factors as well as adaptive immune response. Several conventional drugs are available for the treatment of RA but have their own drawbacks which can be overcome by the use of novel drug delivery systems. : The objective of the present review is to focus on the molecular pathogenesis of the disease and its current conventional treatment with special reference to the role of novel drug delivery systems encapsulating anti rheumatic drugs and herbal drugs in passive and receptor mediated active targeting against RA. On reviewing the conventional and current therapeutics agains RA, we conclude that, although the current therapy for the treatment of RA is capable enough, yet more advances in the field of targeted drug delivery will sanguinely result in effective and appropriate treatment of this autoimmune disease.


2021 ◽  
Vol 21 ◽  
Author(s):  
Madhukar Garg ◽  
Anju Goyal ◽  
Sapna Kumari

: Cubosomes are highly stable nanostructured liquid crystalline dosage delivery form derived from amphiphilic lipids and polymer-based stabilizers converting it in a form of effective biocompatible carrier for the drug delivery. The delivery form comprised of bicontinuous lipid bilayers arranged in three dimensional honeycombs like structure provided with two internal aqueous channels for incorporation of number of biologically active ingredients. In contrast liposomes they provide large surface area for incorporation of different types of ingredients. Due to the distinct advantages of biocompatibility and thermodynamic stability, cubosomes have remained the first preference as method of choice in the sustained release, controlled release and targeted release dosage forms as new drug delivery system for the better release of the drugs. As lot of advancement in the new form of dosage form has bring the novel avenues in drug delivery mechanisms so it was matter of worth to compile the latest updates on the various aspects of mentioned therapeutic delivery system including its structure, routes of applications along with the potential applications to encapsulate variety drugs to serve health related benefits.


Sign in / Sign up

Export Citation Format

Share Document