scholarly journals Cell-Type Specific Metabolic Response of Cancer Cells to Curcumin

2020 ◽  
Vol 21 (5) ◽  
pp. 1661
Author(s):  
Anamarija Mojzeš ◽  
Marko Tomljanović ◽  
Lidija Milković ◽  
Renata Novak Kujundžić ◽  
Ana Čipak Gašparović ◽  
...  

In order to support uncontrolled proliferation, cancer cells need to adapt to increased energetic and biosynthetic requirements. One such adjustment is aerobic glycolysis or the Warburg effect. It is characterized by increased glucose uptake and lactate production. Curcumin, a natural compound, has been shown to interact with multiple molecules and signaling pathways in cancer cells, including those relevant for cell metabolism. The effect of curcumin and its solvent, ethanol, was explored on four different cancer cell lines, in which the Warburg effect varied. Vital cellular parameters (proliferation, viability) were measured along with the glucose consumption and lactate production. The transcripts of pyruvate kinase 1 and 2 (PKM1, PKM2), serine hydroxymethyltransferase 2 (SHMT2) and phosphoglycerate dehydrogenase (PHGDH) were quantified with RT-qPCR. The amount and intracellular localization of PKM1, PKM2 and signal transducer and activator of transcription 3 (STAT3) proteins were analyzed by Western blot. The response to ethanol and curcumin seemed to be cell-type specific, with respect to all parameters analyzed. High sensitivity to curcumin was present in the cell lines originating from head and neck squamous cell carcinomas: FaDu, Detroit 562 and, especially, Cal27. Very low sensitivity was observed in the colon adenocarcinoma-originating HT-29 cell line, which retained, after exposure to curcumin, a higher levels of lactate production despite decreased glucose consumption. The effects of ethanol were significant.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1799-1799 ◽  
Author(s):  
Shiho Fujiwara ◽  
Yawara Kawano ◽  
Hiromichi Yuki ◽  
Yutaka Okuno ◽  
Kisato Nosaka ◽  
...  

Abstract Abstract 1799 Introduction: A number of studies have shown that the high level of serum lactate dehydrogenase (LDH) serves as an indicator for poor prognosis in multiple myeloma (MM). LDH is a key enzyme for glycolysis converting pyruvate to lactate, which is eventually utilized as an energy source particularly in tumor cells. It has been reported that cancer cells utilize this glycolysis pathway even in the presence of adequate oxygen to provide cancer cells with energy, called the Warburg effect (aerobic glycolysis). Myc is known to regulate LDH and pyruvate dehydrogenase kinase 1 (PDK1), which are master regulators of glycolysis (Figure 1). Although myc is a well known gene expressed in MM cells, there has been no report analyzing its association with the glycolysis-regulating genetic system, which is located downstream to the myc gene, in MM cells. In the present study, we examined if the glycolysis system is directly or indirectly associated with the survival of MM cells. Methods: MM cells were purified from primary bone marrow samples from 54 patients using CD138-magnetic beads. Written informed consent was obtained from all cases. Seven MM cell lines, RPMI8226, U266, KMS12BM, KMS12PE, KHM11, KMM1 and KMS11, were employed. Five genes associated with glycolysis, i.e., c-MYC, GLUT1 (glucose transporter 1), LDHA (LDH-encoding gene), hypoxia induced factor-1 alpha (HIF1a) and PDK1, were examined using real time PCR analysis. Glucose consumption and lactate production in culture supernatants of MM cell lines were analyzed. Oxamate, a competitive inhibitor of LDHA, was utilized to quantify cytotoxic effects on MM cells. Cytotoxicity was evaluated with AnnexinV/PI staining. Results: Heterogeneous expression of LDHA gene was observed (Figure 2A). High LDHA mRNA expression levels significantly correlated with poor survival (Figure 2B, p<0.01). A significant correlation between serum LDH levels and the mRNA expression levels of LDHA, was also found (p<0.01). Moreover, LDHA mRNA expression was significantly higher in MM cells than in plasma cells from patients with monoclonal gammopathy of undetermined significance (MGUS) (p<0.01). LDHA expression levels correlated with the expression levels of (i) c-MYC (p<0.0001) (ii) PDK1 (p<0.0023), a key enzyme regulating the Warburg effect, and (iii) GLUT1 (p<0.0003), while it did not correlate with HIF1a expression. It was also found that the greater glucose consumption, the greater lactate production as well as LDH activity in MM cell lines with higher LDHA mRNA expression. Finally, we found that an LDH-inhibitor, oxamate, activated caspase-3 (Figure 3) and induced apoptosis in MM cell lines as well as primary MM cells. Conclusion: Our results suggest that aerobic glycolysis (the Warburg effect) is up-regulated in MM cells of patients with high serum LDH levels and that the aberrant expression of LDHA, PDK1 and GLUT1 is critical for the survival of MM cells with high serum LDH levels. Thus, aerobic glycolysis itself could serve as a novel therapeutic target in MM patients. Since MM with high serum LDH is with poor prognosis even after the advent of new agents, the present data might have a clinical relevance and might open a new avenue to develop novel therapeutic modalities for treating MM with high serum LDH levels. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 114 (52) ◽  
pp. 13732-13737 ◽  
Author(s):  
Yang Wang ◽  
Jia Liu ◽  
Xin Jin ◽  
Dapeng Zhang ◽  
Dongxue Li ◽  
...  

The Warburg effect, characterized by increased glucose uptake and lactate production, is a well-known universal across cancer cells and other proliferating cells. PKM2, a splice isoform of the pyruvate kinase (PK) specifically expressed in these cells, serves as a major regulator of this metabolic reprogramming with an adjustable activity subjected to numerous allosteric effectors and posttranslational modifications. Here, we have identified a posttranslational modification on PKM2, O-GlcNAcylation, which specifically targets Thr405 and Ser406, residues of the region encoded by the alternatively spliced exon 10 in cancer cells. We show that PKM2 O-GlcNAcylation is up-regulated in various types of human tumor cells and patient tumor tissues. The modification destabilized the active tetrameric PKM2, reduced PK activity, and led to nuclear translocation of PKM2. We also observed that the modification was associated with an increased glucose consumption and lactate production and enhanced level of lipid and DNA synthesis, indicating that O-GlcNAcylation promotes the Warburg effect. In vivo experiments showed that blocking PKM2 O-GlcNAcylation attenuated tumor growth. Thus, we demonstrate that O-GlcNAcylation is a regulatory mechanism for PKM2 in cancer cells and serves as a bridge between PKM2 and metabolic reprogramming typical of the Warburg effect.


2018 ◽  
Vol 45 (6) ◽  
pp. 2548-2559 ◽  
Author(s):  
Yuanyuan Zhou ◽  
Xia Zheng ◽  
Jiaojiao Lu ◽  
Wei Chen ◽  
Xu Li ◽  
...  

Background/Aims: The Warburg effect is one of the main energy metabolism features supporting cancer cell growth. 20(S)-Rg3 exerts anti-tumor effect on ovarian cancer partly by inhibiting the Warburg effect. microRNAs are important regulators of the Warburg effect. However, the microRNA regulatory network mediating the anti-Warburg effect of 20(S)-Rg3 was largely unknown. Methods: microRNA deep sequencing was performed to identify the 20(S)-Rg3-influenced microRNAs in SKOV3 ovarian cancer cells. miR-532-3p was overexpressed by mimic532-3p transfection in SKOV3 and A2780 cells or inhibited by inhibitor532-3p transfection in 20(S)-Rg3-treated cells to examine the changes in HK2 and PKM2 expression, glucose consumption, lactate production and cell growth. Dual-luciferase reporter assay was conducted to verify the direct binding of miR-532-3p to HK2. The methylation status in the promoter region of pre-miR-532-3p gene was examined by methylation-specific PCR. Expression changes of key molecules controlling DNA methylation including DNMT1, DNMT3A, DNMT3B, and TET1-3 were examined in 20(S)-Rg3-treated cells. DNMT3A was overexpressed in 20(S)-Rg3-treated cells to examine its influence on miR-532-3p level, HK2 and PKM2 expression, glucose consumption and lactate production. Results: Deep sequencing results showed that 11 microRNAs were increased and 9 microRNAs were decreased by 20(S)-Rg3 in SKOV3 cells, which were verified by qPCR. More than 2-fold increase of miR-532-3p was found in 20(S)-Rg3-treated SKOV3 cells. Forced expression of miR-532-3p reduced HK2 and PKM2 expression, glucose consumption and lactate production in SKOV3 and A2780 ovarian cancer cells. Inhibition of miR-532-3p antagonized the suppressive effect of 20(S)-Rg3 on HK2 and PKM2 expression, glucose consumption and lactate production in ovarian cancer cells. Dual-luciferase reporter assay showed that miR-532-3p directly suppressed HK2 rather than PKM2. miR-532-3p level was controlled by the methylation in the promoter region of its host gene. 20(S)-Rg3 inhibited DNMT3A expression while exerted insignificant effect on DNMT1, DNMT3B and TET1-3. 20(S)-Rg3 reversed DNMT3A-mediated methylation in the promoter of the host gene of miR-532-3p, and thus elevated miR-532-3p level followed by suppression of HK2 and PKM2 expression, glucose consumption and lactate production. Conclusions: 20(S)-Rg3 modulated microRNAs to exert the anti-tumor effect in ovarian cancer. 20(S)-Rg3 lessened the DNMT3A-mediated methylation and promoted the suppression of miR-532-3p on HK2 to antagonize the Warburg effect of ovarian cancer cells.


2018 ◽  
Vol 51 (3) ◽  
pp. 1340-1353 ◽  
Author(s):  
Xia Zheng ◽  
Yuanyuan Zhou ◽  
Wei Chen ◽  
Lihong Chen ◽  
Jiaojiao Lu ◽  
...  

Background/Aims: The Warburg effect is one of the main metabolic features for cancers, with long non-coding RNA (lncRNA) being involved as a class of crucial regulators. Our previous studies have shown that ginsenoside 20(S)-Rg3, an active saponin monomer extracted from red ginseng, inhibits the Warburg effect in ovarian cancer cells. However, the detailed lncRNA regulatory network modulated by 20(S)-Rg3 to prevent the Warburg effect in ovarian cancer cells has not been explored. Methods: High-throughput sequencing was used to screen out the differentially expressed lncRNAs between 20(S)-Rg3-treated and non-treated SKOV3 cells. The levels of lncRNA H19 and miR-324-5p were manipulated in SKOV3 and A2780, and the glucose consumption, lactate production and PKM2 protein level were detected. Dual-luciferase reporter assay and RIP were utilized to verify the direct binding of H19 to miR-324-5p and miR-324-5p to PKM2. Cell proliferation was examined by CCK8 and colony formation assay. Nude mice subcutaneous xenograft tumor models were established to evaluate the impact of miR-324-5p on tumor growth in vivo. Results: 20(S)-Rg3 downregulated 67 lncRNAs, and H19 was one of the most decreased lncRNAs. Suppression of H19 by siRNA transfection reduced glucose consumption, lactate production and PKM2 expression in ovarian cancer cells, while H19 overexpression in 20(S)-Rg3-treated ovarian cancer cells enhanced glucose consumption, lactate production and PKM2 expression. Dual-luciferase reporter assay and RIP results showed that H19 directly bound to miR-324-5p. Dual-luciferase reporter assay showed that miR-324-5p directly targeted PKM2, and miR-324-5p negatively regulated glucose consumption and lactate production in ovarian cancer cells. miR-324-5p overexpression inhibited cell proliferation in vitro and in vivo. Conclusion: Our study revealed that 20(S)-Rg3 blocked the competitive inhibition of H19 on miR-324-5p, which enhanced the suppression of miR-324-5p on PKM2 and therefore inhibited the Warburg effect and repressed tumorigenesis. In a word, 20(S)-Rg3 inhibited the Warburg effect in ovarian cancer cells via H19/miR-324-5p/PKM2 pathway.


2018 ◽  
Vol 72 ◽  
pp. 481-490
Author(s):  
Wojciech Graboń ◽  
Dagmara Otto-Ślusarczyk ◽  
Anna Barańczyk-Kuźma

The common characteristics of many tumors is phenomenon termed the Warburg effect – the production of abundant amounts of lactate in the presence of sufficient oxygen. It is commonly accepted that lactate is synthesized from glucose; hence, the other term for this phenomenon is aerobic glycolysis. Hypoxia, frequently observed in solid tumors, results in an increased HIF 1 transcription factor activity, which stimulates lactate synthesis by activating the transcription of glucose transporters and glycolytic enzymes genes, while inhibiting mitochondrial pyruvate metabolism. However, under normoxic conditions, when the HIF-1 factor is inactive, the lactate is the product not only of glycolysis, but also of glutaminolysis. Both pathways are activated by the c-myc transcription factor. Glutaminolysis, the mitochondrial pathway involving Krebs cycle enzymes, provides energy to the cell and the pathway intermediates (L-glutamate, L-aspartate, acetyl CoA) are substrates for the synthesis of nucleic acids, proteins and lipids. Subsequently, the cytoplasmic oxaloacetate-malate-pyruvate-lactate axis provides redox cofactors - NADPH for lipid and DNA synthesis and for cellular antioxidant systems as well as NAD+ necessary for efficient glycolysis resulting in increased lactate synthesis from glucose at normoxia. Thus, oxygen as Krebs cycle activator enhances lactate synthesis as the end product of glutaminolysis as well as promotes glycolytic lactate synthesis. In conclusion, the Warburg effect is the result of oxygen-induced extensive lactate production in both glycolysis and glutaminolysis pathways. Thus, an increased lactate synthesis at normoxia is just not the result of the cellular shift to extramitochondrial metabolism, but a manifestation of transcriptionally regulated adaptive response, allowing the cancer cells to acquire the energy and nutrients necessary for growth and proliferation.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5557
Author(s):  
Alexandre Vallée ◽  
Yves Lecarpentier ◽  
Jean-Noël Vallée

The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Nuclear β-catenin accumulation is associated with cancer. Hypoxic mechanisms lead to the activation of the hypoxia-inducible factor (HIF)-1α, promoting glycolytic and energetic metabolism and angiogenesis. However, HIF-1α is degraded by the HIF prolyl hydroxylase under normoxia, conditions under which the WNT/β-catenin pathway can activate HIF-1α. This review is therefore focused on the interaction between the upregulated WNT/β-catenin pathway and the metabolic processes underlying cancer mechanisms under normoxic conditions. The WNT pathway stimulates the PI3K/Akt pathway, the STAT3 pathway and the transduction of WNT/β-catenin target genes (such as c-Myc) to activate HIF-1α activity in a hypoxia-independent manner. In cancers, stimulation of the WNT/β-catenin pathway induces many glycolytic enzymes, which in turn induce metabolic reprogramming, known as the Warburg effect or aerobic glycolysis, leading to lactate overproduction. The activation of the Wnt/β-catenin pathway induces gene transactivation via WNT target genes, c-Myc and cyclin D1, or via HIF-1α. This in turn encodes aerobic glycolysis enzymes, including glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production. The increase in lactate production is associated with modifications to the tumor microenvironment and tumor growth under normoxic conditions. Moreover, increased lactate production is associated with overexpression of VEGF, a key inducer of angiogenesis. Thus, under normoxic conditions, overstimulation of the WNT/β-catenin pathway leads to modifications of the tumor microenvironment and activation of the Warburg effect, autophagy and glutaminolysis, which in turn participate in tumor growth.


2021 ◽  
Author(s):  
Shonagh Russell ◽  
Liping Xu ◽  
Yoonseok Kam ◽  
Dominique Abrahams ◽  
Bryce Ordway ◽  
...  

Aggressive cancers commonly ferment glucose to lactic acid at high rates, even in the presence of oxygen. This is known as aerobic glycolysis, or the “Warburg Effect”. It is widely assumed that this is a consequence of the upregulation of glycolytic enzymes. Oncogenic drivers can increase the expression of most proteins in the glycolytic pathway, including the terminal step of exporting H+ equivalents from the cytoplasm. Proton exporters maintain an alkaline cytoplasmic pH, which can enhance all glycolytic enzyme activities, even in the absence of oncogene-related expression changes. Based on this observation, we hypothesized that increased uptake and fermentative metabolism of glucose could be driven by the expulsion of H+ equivalents from the cell. To test this hypothesis, we stably transfected lowly-glycolytic MCF-7, U2-OS, and glycolytic HEK293 cells to express proton exporting systems: either PMA1 (yeast H+-ATPase) or CAIX (carbonic anhydrase 9). The expression of either exporter in vitro enhanced aerobic glycolysis as measured by glucose consumption, lactate production, and extracellular acidification rate. This resulted in an increased intracellular pH, and metabolomic analyses indicated that this was associated with an increased flux of all glycolytic enzymes upstream of pyruvate kinase. These cells also demonstrated increased migratory and invasive phenotypes in vitro, and these were recapitulated in vivo by more aggressive behavior, whereby the acid-producing cells formed higher grade tumors with higher rates of metastases. Neutralizing tumor acidity with oral buffers reduced the metastatic burden. Therefore, cancer cells with increased H+ export increase intracellular alkalization, even without oncogenic driver mutations, and this is sufficient to alter cancer metabolism towards a Warburg phenotype.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1821-1821
Author(s):  
Shiho Fujiwara ◽  
Naoko Wada ◽  
Yawara Kawano ◽  
Hiromichi Yuki ◽  
Yutaka Okuno ◽  
...  

Abstract Abstract 1821 Introduction It has been reported that cancer cells utilize glycolysis pathway (non-oxidative breakdown of glucose) even in the presence of adequate oxygen to provide cancer cells with energy, called the Warburg effect (aerobic glycolysis) that ultimately leads to produce lactate. We reported in the last ASH meeting that aerobic glycolysis is up-regulated in multiple myeloma (MM) cells in patients with high serum LDH levels and aerobic glycolysis itself could serve as a novel therapeutic target in MM patients. Here we report an importance of lactate transporter for the growth and survival of MM cells. Lactate, produced from pyruvate by lactate dehydrogenase A (LDHA), is known as an important energy source for solid tumor cells and is associated with tumor angiogenesis and chemo-resistance (Pinheiro, C., et al. J Bioenerg Biomembr. 44:127–139, 2012). On the other hand, LDHB converts lactate to pyruvate, thus negatively regulating lactate production. It is known that lactate is pumped out through monocarboxylate trasnporter, MCT4, while MCT1 mainly imports lactate to inside of cells. However, roles of MCT1 and MCT4 in MM cells remain to be elucidated. We here investigated the roles of these two molecules in the growth and survival of MM cells. CD147, a purported chaperone protein for MCT1, was also examined. Methods Six MM cell lines, RPMI8226, U266, KMS12BM, KMS12PE, KHM11, and KMM1 were employed. Six genes associated with glycolysis, i.e., LDHA, LDHB, MCT1-4, were examined using real time PCR analysis. Expressions of MCT1 and MCT4 were analyzed with western blotting. Expression of CD147 was investigated by flow cytometry. Lactate production into culture supernatants of MM cell lines were analyzed by using a lactate analyzer. An inhibitor of MCT1, a-cyano-4 hydroxycinnamic acid (CHC), was utilized to analyze cytotoxic effects on MM cells. AnnexinV/PI stained cells was analyzed by flow cytometry to quantify cytotoxicity. MCT1-expression was inhibited by using siRNA. Dichroloacetate (DCA), an inhibitor of PDK1, was utilized for inhibiting glycolysis. Results Accumulation of lactate was found in the supernatants of MM cell lines as cell density increased. Transporters of lactate, MCT1, MCT4 and CD147, were found in most MM cell lines at various levels, suggesting that transportation of lactate occurs through membrane of MM cells. To examine the role of lactate as a growth promotion factor, lactate was exogenously supplemented to KMS-12-PE cells. Interestingly, expressions of MCT1 and LDHB genes increased by the addition of lactate while those of MCT4 and LDHA only moderately changed (Fig. 1), suggesting that lactate was imported to cells through MCT1, then converted to pyrvate by LDHB. These results raised a possibility that lactate is utilized by MM cells as a growth factor. To examine the possibility, CHC, an inhibitor of MCT1, was supplemented to MM cell cultures. Interestingly, CHC induced apoptosis in MM cells in a dose dependent manner (Fig. 2). Moreover, inhibition of MCT1 gene by siRNA showed significant induction of apoptosis (Fig. 3), strongly suggesting that MCT1 plays a crucial role for survival of MM cells. Finally, we found a significant increase in the apoptosis of MM cells when CHC and DCA were simultaneously added in the culture (Fig.4), suggesting that MCT1 functions independently from glycolysis per se and that CHC and DCA act additively in starving lactate within MM cells. Conclusion Our results suggest that lactate is actively transported through monocarboxylate transporters. Given the results that exogenous lactate production increased MCT1 and LDHB expression, lactate should play a role as a regulator of lactate transportation and glycolysis as well as an important energy source. Because we found significant amount of lactate was produced from stromal cells obtained from MM patients, lactate may be supplied not only from MM cells themselves but also from micro-environment. Our finding that inhibition of MCT1 leads to cell death suggests that MCT1 could be a potential novel target molecule in MM therapy that could be stratified in combination with glycolysis inhibitor. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 44 (5) ◽  
pp. 1499-1505 ◽  
Author(s):  
Michelle Potter ◽  
Emma Newport ◽  
Karl J. Morten

Influential research by Warburg and Cori in the 1920s ignited interest in how cancer cells' energy generation is different from that of normal cells. They observed high glucose consumption and large amounts of lactate excretion from cancer cells compared with normal cells, which oxidised glucose using mitochondria. It was therefore assumed that cancer cells were generating energy using glycolysis rather than mitochondrial oxidative phosphorylation, and that the mitochondria were dysfunctional. Advances in research techniques since then have shown the mitochondria in cancer cells to be functional across a range of tumour types. However, different tumour populations have different bioenergetic alterations in order to meet their high energy requirement; the Warburg effect is not consistent across all cancer types. This review will discuss the metabolic reprogramming of cancer, possible explanations for the high glucose consumption in cancer cells observed by Warburg, and suggest key experimental practices we should consider when studying the metabolism of cancer.


2017 ◽  
Vol 53 (39) ◽  
pp. 5433-5436 ◽  
Author(s):  
M. Shimi ◽  
Vandana Sankar ◽  
M. K. Abdul Rahim ◽  
P. R. Nitha ◽  
Suresh Das ◽  
...  

Glycoconjugated squaraine dyes for selective internalisation in cancer cell lines are reported. The cancer cell selectivity was achieved through the “Warburg effect”.


Sign in / Sign up

Export Citation Format

Share Document