scholarly journals Regulatory Mechanism of MicroRNA Expression in Cancer

2020 ◽  
Vol 21 (5) ◽  
pp. 1723 ◽  
Author(s):  
Zainab Ali Syeda ◽  
Siu Semar Saratu’ Langden ◽  
Choijamts Munkhzul ◽  
Mihye Lee ◽  
Su Jung Song

Altered gene expression is the primary molecular mechanism responsible for the pathological processes of human diseases, including cancer. MicroRNAs (miRNAs) are virtually involved at the post-transcriptional level and bind to 3′ UTR of their target messenger RNA (mRNA) to suppress expression. Dysfunction of miRNAs disturbs expression of oncogenic or tumor-suppressive target genes, which is implicated in cancer pathogenesis. As such, a large number of miRNAs have been found to be downregulated or upregulated in human cancers and to function as oncomiRs or oncosuppressor miRs. Notably, the molecular mechanism underlying the dysregulation of miRNA expression in cancer has been recently uncovered. The genetic deletion or amplification and epigenetic methylation of miRNA genomic loci and the transcription factor-mediated regulation of primary miRNA often alter the landscape of miRNA expression in cancer. Dysregulation of the multiple processing steps in mature miRNA biogenesis can also cause alterations in miRNA expression in cancer. Detailed knowledge of the regulatory mechanism of miRNAs in cancer is essential for understanding its physiological role and the implications of cancer-associated dysfunction and dysregulation. In this review, we elucidate how miRNA expression is deregulated in cancer, paying particular attention to the cancer-associated transcriptional and post-transcriptional factors that execute miRNA programs.

2020 ◽  
Author(s):  
Miriam Ragle Aure ◽  
Thomas Fleischer ◽  
Sunniva Bjørklund ◽  
Jørgen Ankill ◽  
Jaime A. Castro-Mondragon ◽  
...  

AbstractBackgroundAbnormal DNA methylation is observed as an early event in breast carcinogenesis. However, how such alterations arise is still poorly understood. microRNAs (miRNAs) regulate gene expression at the post-transcriptional level and have been shown to play key roles in various biological processes. Here, we integrate miRNA expression and DNA methylation at CpGs to study how miRNAs may affect the breast cancer methylome and how DNA methylation may regulate miRNA expression.ResultsmiRNA expression and DNA methylation data from two breast cancer cohorts were subjected to genome-wide correlation analysis. Clustering of the miRNA expression-DNA methylation association pairs significant in both cohorts identified distinct clusters of miRNAs and CpGs. These clusters recapitulated important biological processes associated with breast cancer pathogenesis. Notably, two major clusters were related to immune or fibroblast infiltration, hence identifying miRNAs associated with cells of the tumor microenvironment, while another large cluster was related to estrogen receptor (ER) signaling. Studying the chromatin landscape surrounding the CpGs associated with the estrogen-signaling cluster, we found that miRNAs from this cluster are likely to be regulated through DNA methylation of enhancers bound by FOXA1, GATA2 and ER-alpha. Further, at the hub of the estrogen-cluster, we identified hsa-miR-29c-5p as negatively correlated with the mRNA and protein expression of the DNA methyltransferase DNMT3A, a key enzyme regulating DNA methylation. We found deregulation of hsa-miR-29c-5p already in pre-invasive breast lesions and postulate that hsa-miR-29c-5p may trigger early event abnormal DNA methylation in ER positive breast cancer.ConclusionsWe describe how miRNA expression and DNA methylation interact and associate with distinct breast cancer phenotypes.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1738 ◽  
Author(s):  
Hiroshi Handa ◽  
Yuki Murakami ◽  
Rei Ishihara ◽  
Kei Kimura-Masuda ◽  
Yuta Masuda

Recently, attention has been drawn to the role of non-coding regions of the genome in cancer pathogenesis. MicroRNAs (miRNAs) are small non-coding RNAs with 19–25 bases of length that control gene expression by destroying messenger RNA or inhibiting its translation. In multiple myeloma (MM), the expression of several miRNAs, such as miR-15a and miR-16, is markedly decreased and their target genes upregulated, suggesting their role as tumor-suppressing miRNAs. In contrast, miRNAs such as miR-21 and miR-221 are highly expressed and function as oncogenes (oncomiRs). In addition, several miRNAs, such as those belonging to the miR-34 family, are transcriptional targets of p53 and mediate its tumor-suppressive functions. Many miRNAs are associated with drug resistance, and the modulation of their expression or activity might be explored to reverse it. Moreover, miRNA expression patterns in either MM cells or serum exosomes have been shown to be good prognostic markers. miRNA regulation mechanisms have not been fully elucidated. Many miRNAs are epigenetically controlled by DNA methylation and histone modification, and others regulate the expression of epigenetic modifiers, indicating that miRNA and other epigenetic effectors are part of a network. In this review, we outlined the roles of miRNAs in MM and their potential to predict MM prognosis and develop novel therapies.


2020 ◽  
Vol 245 (5) ◽  
pp. 395-401
Author(s):  
Pai-Sheng Chen ◽  
Shao-Chieh Lin ◽  
Shaw-Jenq Tsai

The discovery of microRNA (miRNA) significantly extends our knowledge on gene regulation and noncoding gene functions. MiRNAs are important post-transcriptional regulators involve in a wide range of biological functions and diseases, including cancer. MiRNAs are produced by a unique biogenesis pathway involving the two-step sequential nuclear and cytoplasmic RNase-dependent processing at post-transcriptional level. However, a specific (set) of miRNA(s) is (are) synthesized under certain circumstance or developmental/pathological stage to fine-tune the gene expression profile. In this minireview, we will discuss the mechanism of miRNA biogenesis in cancer, mainly focusing on how Drosha and Dicer, two critical molecules controlling miRNA biogenesis, are modulated and which factor contributes to the specificity of selected miRNA maturation. Impact statement The canonical maturation pathway of miRNAs is highly conserved, indicating the crucial roles of these mini-regulators in most cellular processes. Dysregulation of specific miRNAs or imbalance of miRNA abundance has been observed in cancers. Accumulating evidence has shown that the interplay between miRNA processing factors and regulatory proteins previously known as key players in cancer malignancy regulates the biogenesis of miRNAs, expression of target genes, and eventually the alteration of cellular phenotypes. This minireview summarizes the current findings in the modulation of miRNA biogenesis in cancer to advance the understanding of how noncoding RNA contributes to cancer development and malignancy.


2000 ◽  
Vol 23 (2) ◽  
pp. 357-364 ◽  
Author(s):  
Aurora M. Cianciarullo ◽  
Paulo C. Naoum ◽  
Álvaro L. Bertho ◽  
Leonardo S. Kobashi ◽  
Willy Beçak ◽  
...  

Erythropoietic and hemoglobin DNA transcriptional activities were analyzed in the diploid and the tetraploid Odontophrynus americanus. Flow cytometric analyses of DNA, RNA and mitochondrial contents showed increased genic activity in both diploid and tetraploid animals during erythropoiesis in vivo elicited by pretreatment phenylhydrazine. Generally, higher values were seen in immature tetraploid erythroid cells. On the 10th day of recovery from anemia, large amounts of messenger RNA were found in both specimens. Based on the mitochondrial content, the tetraploid cells had more intense energy metabolism than the diploid cells. Diploid O. americanus had about three times more erythroid cells than tetraploid specimens, indicating that there were differences in the regulatory mechanisms of erythroid cells. Hematological parameters showed that tetraploid cells had 30% more hemoglobin than the diploid, suggesting a regulatory mechanism of hemoglobin synthesis at the transcriptional level. Cytoplasmic inclusions resembling Heinz bodies were found in both types of cells. In the tetraploid cells they were previously found associated with RNA or RNP, suggesting that other regulatory system which controls the accumulation of nontranslated RNA transcribed in excess must be present. These differences at the physiological and molecular levels during erythropoiesis reinforce the hypothesis that speciation is occurring between diploid and tetraploid O. americanus.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Miriam Ragle Aure ◽  
◽  
Thomas Fleischer ◽  
Sunniva Bjørklund ◽  
Jørgen Ankill ◽  
...  

Abstract Background Abnormal DNA methylation is observed as an early event in breast carcinogenesis. However, how such alterations arise is still poorly understood. microRNAs (miRNAs) regulate gene expression at the post-transcriptional level and play key roles in various biological processes. Here, we integrate miRNA expression and DNA methylation at CpGs to study how miRNAs may affect the breast cancer methylome and how DNA methylation may regulate miRNA expression. Methods miRNA expression and DNA methylation data from two breast cancer cohorts, Oslo2 (n = 297) and The Cancer Genome Atlas (n = 439), were integrated through a correlation approach that we term miRNA-methylation Quantitative Trait Loci (mimQTL) analysis. Hierarchical clustering was used to identify clusters of miRNAs and CpGs that were further characterized through analysis of mRNA/protein expression, clinicopathological features, in silico deconvolution, chromatin state and accessibility, transcription factor binding, and long-range interaction data. Results Clustering of the significant mimQTLs identified distinct groups of miRNAs and CpGs that reflect important biological processes associated with breast cancer pathogenesis. Notably, two major miRNA clusters were related to immune or fibroblast infiltration, hence identifying miRNAs associated with cells of the tumor microenvironment, while another large cluster was related to estrogen receptor (ER) signaling. Studying the chromatin landscape surrounding CpGs associated with the estrogen signaling cluster, we found that miRNAs from this cluster are likely to be regulated through DNA methylation of enhancers bound by FOXA1, GATA2, and ER-alpha. Further, at the hub of the estrogen cluster, we identified hsa-miR-29c-5p as negatively correlated with the mRNA and protein expression of DNA methyltransferase DNMT3A, a key enzyme regulating DNA methylation. We found deregulation of hsa-miR-29c-5p already present in pre-invasive breast lesions and postulate that hsa-miR-29c-5p may trigger early event abnormal DNA methylation in ER-positive breast cancer. Conclusions We describe how miRNA expression and DNA methylation interact and associate with distinct breast cancer phenotypes.


2021 ◽  
Author(s):  
Chun Yang ◽  
Stéphane Croteau ◽  
Pierre Hardy

Abstract Background HDAC9 (histone deacetylase 9) belongs to the class IIa family of histone deacetylases. This enzyme can shuttle freely between the nucleus and cytoplasm and promotes tissue-specific transcriptional regulation by interacting with histone and non-histone substrates. HDAC9 plays an essential role in diverse physiological processes including cardiac muscle development, bone formation, adipocyte differentiation and innate immunity. HDAC9 inhibition or activation is therefore a promising avenue for therapeutic intervention in several diseases. HDAC9 overexpression is also common in cancer cells, where HDAC9 alters the expression and activity of numerous relevant proteins involved in carcinogenesis. Conclusions This review summarizes the most recent discoveries regarding HDAC9 as a crucial regulator of specific physiological systems and, more importantly, highlights the diverse spectrum of HDAC9-mediated posttranslational modifications and their contributions to cancer pathogenesis. HDAC9 is a potential novel therapeutic target, and the restoration of aberrant expression patterns observed among HDAC9 target genes and their related signaling pathways may provide opportunities to the design of novel anticancer therapeutic strategies.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Qiudan Chen ◽  
Weifeng Wang ◽  
Shuying Chen ◽  
Xiaotong Chen ◽  
Yong Lin

AbstractRecently, pivotal functions of miRNAs in regulating common tumorigenic processes and manipulating signaling pathways in brain tumors have been recognized; notably, miR‐29a is closely associated with p53 signaling, contributing to the development of glioma. However, the molecular mechanism of the interaction between miR-29a and p53 signaling is still to be revealed. Herein, a total of 30 glioma tissues and 10 non-cancerous tissues were used to investigate the expression of miR‐29a. CCK-8 assay and Transwell assay were applied to identify the effects of miR-29a altered expression on the malignant biological behaviors of glioma cells in vitro, including proliferation, apoptosis, migration and invasion. A dual-luciferase reporter assay was used to further validate the regulatory effect of p53 or miR-29a on miR-29a or MDM2, respectively, at the transcriptional level. The results showed that miR-29a expression negatively correlated with tumor grade of human gliomas; at the same time it inhibited cell proliferation, migration, and invasion and promoted apoptosis of glioma cells in vitro. Mechanistically, miR-29a expression was induced by p53, leading to aberrant expression of MDM2 targeted by miR-29a, and finally imbalanced the activity of the p53-miR-29a-MDM2 feedback loop. Moreover, miR-29a regulating p53/MDM2 signaling sensitized the response of glioma cells to temozolomide treatment. Altogether, the study demonstrated a potential molecular mechanism in the tumorigenesis of glioma, while offering a possible target for treating human glioma in the future.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 431
Author(s):  
Longxue Ma ◽  
Xu Li ◽  
Xiaoyun Ma ◽  
Qiang Yu ◽  
Xiaohua Yu ◽  
...  

Peanuts are frequently infected by Aspergillus strains and then contaminated by aflatoxins (AF), which brings out economic losses and health risks. AF production is affected by diverse environmental factors, especially water activity (aw). In this study, A. flavus was inoculated into peanuts with different aw (0.90, 0.95, and 0.99). Both AFB1 yield and conidia production showed the highest level in aw 0.90 treatment. Transcriptional level analyses indicated that AF biosynthesis genes, especially the middle- and later-stage genes, were significantly up-regulated in aw 0.90 than aw 0.95 and 0.99. AtfB could be the pivotal regulator response to aw variations, and could further regulate downstream genes, especially AF biosynthesis genes. The expressions of conidia genes and relevant regulators were also more up-regulated at aw 0.90 than aw 0.95 and 0.99, suggesting that the relative lower aw could increase A. flavus conidia development. Furthermore, transcription factors involved in sexual development and nitrogen metabolism were also modulated by different aw. This research partly clarified the regulatory mechanism of aw on AF biosynthesis and A. flavus development and it would supply some advice for AF prevention in food storage.


Author(s):  
Yu-Qian Liu ◽  
Yan-Zhong Chang ◽  
Bin Zhao ◽  
Hai-Tao Wang ◽  
Xiang-Lin Duan

Some athletes are diagnosed as suffering from sports anemia because of iron deficiency, but the regulatory mechanism remains poorly understood. It is reported that hepcidin may provide a way to illuminate the regulatory mechanism of exercise-associated anemia. Here the authors investigate the hepcidin-involved iron absorption in exercise-associated anemia. Twelve male Wistar rats (300 ± 10 g) were randomly divided into 2 groups, 6 in a control group (CG) and 6 in an exercise group (EG, 5 wk treadmill exercise of different intensities with progressive loading). Serum samples were analyzed for circulating levels of IL-6 by means of enzyme-linked immunosorbent assay (ELISA). The expression of hepatic hepcidin mRNA was examined by real-time polymerase chain reaction analysis. The protein levels of divalent metal transporter 1 (DMT1), ferroportin1 (FPN1), and heme-carrier protein 1 (HCP1) of duodenum epithelium were examined by Western blot. The results showed that the amount of iron and ferritin in serum were lower in EG than in CG (p < .05). The levels of IL-6 and white blood cells were greater in EG than in CG (p < .01). The expression of DMT1, HCP1, and FPN1 was significantly lower in EG than in CG (p < .01). The mRNA expressions of hepatic hepcidin and hemojuvelin in skeletal muscle were remarkably higher in EG than in CG. The data indicated that inflammation was induced by strenuous exercise, and as a result, the transcriptional level of the hepatic hepcidin gene was increased, which further inhibited the expression of iron-absorption proteins and led to exercise-associated anemia.


2018 ◽  
Vol 16 (01) ◽  
pp. 1750029 ◽  
Author(s):  
Vladimir Y. Ovchinnikov ◽  
Denis V. Antonets ◽  
Lyudmila F. Gulyaeva

MicroRNAs (miRNAs) play important roles in the regulation of gene expression at the post-transcriptional level. Many exogenous compounds or xenobiotics may affect microRNA expression. It is a well-established fact that xenobiotics with planar structure like TCDD, benzo(a)pyrene (BP) can bind aryl hydrocarbon receptor (AhR) followed by its nuclear translocation and transcriptional activation of target genes. Another chemically diverse group of xenobiotics including phenobarbital, DDT, can activate the nuclear receptor CAR and in some cases estrogen receptors ESR1 and ESR2. We hypothesized that such chemicals can affect miRNA expression through the activation of AHR, CAR, and ESRs. To prove this statement, we used in silico methods to find DRE, PBEM, ERE potential binding sites for these receptors, respectively. We have predicted AhR, CAR, and ESRs binding sites in 224 rat, 201 mouse, and 232 human promoters of miRNA-coding genes. In addition, we have identified a number of miRNAs with predicted AhR, CAR, and ESRs binding sites that are known as oncogenes and as tumor suppressors. Our results, obtained in silico, open a new strategy for ongoing experimental studies and will contribute to further investigation of epigenetic mechanisms of carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document