scholarly journals Isolation and Quantification of Uremic Toxin Precursor-Generating Gut Bacteria in Chronic Kidney Disease Patients

2020 ◽  
Vol 21 (6) ◽  
pp. 1986 ◽  
Author(s):  
Tessa Gryp ◽  
Geert R.B. Huys ◽  
Marie Joossens ◽  
Wim Van Biesen ◽  
Griet Glorieux ◽  
...  

In chronic kidney disease (CKD), impaired kidney function results in accumulation of uremic toxins, which exert deleterious biological effects and contribute to inflammation and cardiovascular morbidity and mortality. Protein-bound uremic toxins (PBUTs), such as p-cresyl sulfate, indoxyl sulfate and indole-3-acetic acid, originate from phenolic and indolic compounds, which are end products of gut bacterial metabolization of aromatic amino acids (AAA). This study investigates gut microbial composition at different CKD stages by isolating, identifying and quantifying PBUT precursor-generating bacteria. Fecal DNA extracts from 14 controls and 138 CKD patients were used to quantify total bacterial number and 11 bacterial taxa with qPCR. Moreover, isolated bacteria from CKD 1 and CKD 5 fecal samples were cultured in broth medium supplemented with AAA under aerobic and anaerobic conditions, and classified as PBUT precursor-generators based on their generation capacity of phenolic and indolic compounds, measured with U(H)PLC. In total, 148 different fecal bacterial species were isolated, of which 92 were PBUT precursor-generators. These bacterial species can be a potential target for reducing PBUT plasma levels in CKD. qPCR indicated lower abundance of short chain fatty acid-generating bacteria, Bifidobacterium spp. and Streptococcus spp., and higher Enterobacteriaceae and E. coli with impaired kidney function, confirming an altered gut microbial composition in CKD.

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Tessa Gryp ◽  
Mario Vaneechoutte ◽  
Marie Joossens ◽  
Wim Van Biesen ◽  
Griet Glorieux

Abstract Background and Aims In chronic kidney disease (CKD), impaired kidney function results in the accumulation of uremic toxins, which exert deleterious biological effects, contributing to cardiovascular morbidity and mortality. Protein-bound uremic toxins (PBUTs), such as p-cresyl sulfate, indoxyl sulfate and indole-3-acetic acid (IAA), originate from phenolic and indolic compounds, which are end products of the gut bacterial metabolization of aromatic amino acids (AAA). This study investigated the microbial composition in different stages of CKD by isolating, identifying and quantifying PBUT precursor-generating bacteria from fecal samples. Method Using fecal samples from patients in CKD stage 1 (n=6) and stage 5 (n=6), bacteria were cultured in a yeast casitone fatty acid glucose broth medium supplemented with AAA under aerobic (2d at 37°C) and anaerobic conditions (7d at 37°C), and confirmed as PBUT precursor-generating bacteria based on their generation capacity of phenolic and indolic compounds, measured with (U)HPLC. Next, fecal DNA from 14 controls, 111 non-dialyzed and 27 dialyzed CKD patients was used to quantify the total bacterial number but also of 11 of the identified PBUT precursor-generating bacteria with qPCR. Using a Kruskal-Wallis test, bacterial loads were compared between the different CKD stages and control. Correlations between disease stages (control and CKD 1-5) and the abundance of bacterial species were assessed with the Spearman’s rank test. Results In total, 150 different bacterial species were isolated from the CKD fecal samples, of which 101 were identified and 92 classified as PBUT precursor-generating bacteria. In general, p-cresol and phenol were mainly generated under anaerobic conditions, while indole and IAA were generated under both aerobic and anaerobic conditions. Phenolic compounds and IAA were predominantly generated by bacterial species belonging to the Bacteroidaceae, Clostridiaceae, Enterococcaceae and Tannerellaceae, while indolic compounds were mainly generated by Bifidobacteriaceae and Enterobacteriaceae. Quantitative analysis of 11 confirmed PBUT precursor-generating bacteria revealed a higher abundance of Streptococcus spp. and Enterobacteriaceae in fecal samples from HD patients compared to controls and early CKD stages, and for Roseburia spp. compared to CKD 5. Moreover, in HD, the abundance of Clostridioides difficile and Lactobacillus spp. was increased compared to CKD 1-5, and of Escherichia coli compared to control (all p>0.05). The abundance of Bacteroides spp., Faecalibacterium prausnitzii, Akkermansia muciniphila and Bifidobacterium spp. as well as the total number of bacteria was comparable among the different CKD stages and controls. Finally, decrease in kidney function (ranging from control to CKD 5) positively correlated with the abundance of Enterobacteriaceae (rs=0.210), and E. coli (rs=0.286), while an inverse correlation was found with Streptococcus spp. (rs=-0.255), Butyricoccus spp. (rs=-0.326), F. prausnitzii (rs=-0.250), Roseburia spp. (rs=-0.342) and Bifidobacterium spp. (rs=-0.303) (all p>0.05). Conclusion The identified PBUT precursor-generating bacteria are potential targets to reduce the plasma PBUT levels in CKD. In addition, in this CKD cohort, based on qPCR, an altered gut microbial composition with the progression of CKD could be established/confirmed.


2021 ◽  
Vol 22 (12) ◽  
pp. 6270
Author(s):  
Chia-Ter Chao ◽  
Shih-Hua Lin

The accumulation of uremic toxins (UTs) is a prototypical manifestation of uremic milieu that follows renal function decline (chronic kidney disease, CKD). Frailty as a potential outcome-relevant indicator is also prevalent in CKD. The intertwined relationship between uremic toxins, including small/large solutes (phosphate, asymmetric dimethylarginine) and protein-bound ones like indoxyl sulfate (IS) and p-cresyl sulfate (pCS), and frailty pathogenesis has been documented recently. Uremic toxins were shown in vitro and in vivo to induce noxious effects on many organ systems and likely influenced frailty development through their effects on multiple preceding events and companions of frailty, such as sarcopenia/muscle wasting, cognitive impairment/cognitive frailty, osteoporosis/osteodystrophy, vascular calcification, and cardiopulmonary deconditioning. These organ-specific effects may be mediated through different molecular mechanisms or signal pathways such as peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), mitogen-activated protein kinase (MAPK) signaling, aryl hydrocarbon receptor (AhR)/nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Runt-related transcription factor 2 (RUNX2), bone morphogenic protein 2 (BMP2), osterix, Notch signaling, autophagy effectors, microRNAs, and reactive oxygen species induction. Anecdotal clinical studies also suggest that frailty may further accelerate renal function decline, thereby augmenting the accumulation of UTs in affected individuals. Judging from these threads of evidence, management strategies aiming for uremic toxin reduction may be a promising approach for frailty amelioration in patients with CKD. Uremic toxin lowering strategies may bear the potential of improving patients’ outcomes and restoring their quality of life, through frailty attenuation. Pathogenic molecule-targeted therapeutics potentially disconnect the association between uremic toxins and frailty, additionally serving as an outcome-modifying approach in the future.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Miki Imazu ◽  
Masanori Asakura ◽  
Takuya Hasegawa ◽  
Hiroshi Asanuma ◽  
Shin Ito ◽  
...  

Background: One of uremic toxins, indoxyl sulfate (IS) is related to the progression of chronic kidney disease (CKD) and the worse cardiovascular outcomes. We have previously reported the relationship between IS levels and the severity of chronic heart failure (CHF), but the question arises as to whether the treatment of uremic toxin is beneficial in patients with CHF. This study aimed to elucidate whether the treatment with the oral adsorbent which reduces uremic toxin improved the cardiac function of the patients with CHF. Methods: First of all, we retrospectively enrolled 49 patients with both CHF and stage ≤3 CKD in our institute compared with the healthy subjects without CHF or CKD in the resident cohort study of Arita. Secondly, we retrospectively enrolled 16 CHF outpatients with stage 3-5 CKD. They were treated with and without the oral adsorbent of AST-120 for one year termed as the treatment and control groups, respectively. We underwent both blood test and echocardiography before and after the treatment. Results: First of all, among 49 patients in CHF patients, plasma IS levels increased to 1.38 ± 0.84 μg/ml from the value of 0.08 ± 0.06 μg/ml in Arita-cho as a community-living matched with gender and eGFR of CHF patients. We found both fractional shortening (FS) and E/e’, an index of diastolic function were decreased (25.0 ± 12.7%) and increased (13.7 ± 7.5), respectively in CHF patients compared with the value of FS and E/e’ in Arita-cho (FS: 41.8 ± 8.3%, E/e’: 8.8 ± 2.1). Secondly, in the treatment group, the plasma IS levels and the serum creatinine and brain natriuretic peptide levels decreased (1.40 ± 0.17 to 0.92 ± 0.15 μg/ml; p<0.05, 1.91 ± 0.16 to 1.67 ± 0.12 mg/dl; p<0.05, 352 ± 57 to 244 ± 49 pg/ml; p<0.05, respectively) and both FS and E/e’ were improved following the treatment with AST-120 (28.8 ± 2.8 to 32.9 ± 2.6%; p<0.05, 18.0 ± 2.0 to 11.8 ± 1.0; p<0.05). However, these parameters did not change in the control group. Conclusions: The treatment to decrease the blood levels of uremic toxins improved not only renal dysfunction but cardiac systolic and diastolic dysfunction in patients with chronic heart failure. Oral adsorbents might be a new treatment of heart failure especially with diastolic dysfunction.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Mieke Steenbeke ◽  
Sophie Valkenburg ◽  
Wim Van Biesen ◽  
Joris Delanghe ◽  
Marijn Speeckaert ◽  
...  

Abstract Background and Aims Chronic kidney disease (CKD) is characterized by gut dysbiosis. We recently demonstrated a decrease of short-chain fatty acid (SCFA) producing bacterial species with the progression of CKD. Besides, levels of protein-bound uremic toxins (PBUTs) and post-translational modifications of protein are increased in CKD, both are risk factors for accelerated cardiovascular morbidity and mortality. The link between the gut-kidney axis and protein carbamylation is unclear. The aim of the study was to explore the relation between carbamylated albumin, estimated by the albumin symmetry factor, and plasma levels of PBUTs, fecal levels of SCFAs (ongoing), and the abundance of related gut microbiota in different stages of CKD (1-5). Method The study cohort includes 103 non-dialyzed CKD patients (stages 1-5). Serum proteins were detected by capillary electrophoresis and UV absorbance at 214 nm with the symmetry factor as a marker of albumin carbamylation [the lower the symmetry factor, the more carbamylated albumin]. The quantification of PBUTs and SCFAs in plasma and fecal samples, respectively, using validated UPLC methods. Results The Pearson correlation coefficient (r) shows a positive correlation between the albumin symmetry factor and the estimated glomerular filtration rate (eGFR) (r=0.3025; p=0.0019). The albumin symmetry factor correlates positively with the abundance of Butyricicoccus spp. (r= 0.3211; p=0.0009), Faecalibacterium prausnitzii (r=0.2765; p=0.0047) and Roseburia spp. (r=0.2527; p=0.0100) and negatively with the PBUTs, p-cresyl sulfate (pCS) (r=-0.2819; p=0.0039), p-cresyl glucuronide (pCG) (r=-0.2819; p=0.0039) and indoxyl sulfate (IxS) (r=-0.2650; p=0.0068). Conclusion The decreased abundance of SCFA producing gut bacteria with the progression of CKD can evoke unfavorable conditions in the gut. This can contribute to increased plasma levels of PBUTs potentially (indirectly) playing a role in albumin carbamylation. It will be further explored whether fecal levels of SCFAs are affected in parallel and could be potential targets to restore gut dysbiosis and uremia.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Laurent Metzinger

Abstract Background and Aims The gene program is controlled at the post-transcriptional level by the action of small non-coding RNAs known as microRNAs (miRNAs), short, single-stranded molecules that control mRNA stability or translational repression via base pairing with regions in the 3' untranslated region of their target mRNAs. Recently, considerable progress has been made to elucidate the roles of miRNAs in vascular pathogenesis and develop the use of miRNAs as biomarkers, and innovative drugs. We demonstrated during the last decade that miRNAs miR-126 and miR-223 are implicated in the course of chronic kidney disease (CKD) and cardiovascular damage. miR-223 expression is enhanced in vascular smooth muscle cells (VSMCs) subjected to an uremic toxin and also in aortas of a murine model of CKD. As restenosis is a common complication of angioplasty, in which neointimal hyperplasia results from migration of VSMCs into the vessel lumen we measured the effect of miR-223 modulation on restenosis in a rat model of carotid artery after balloon injury. We over-expressed and inhibited miR-223 expression using adenoviral vectors, coding a pre-miR-223 sequence or a sponge sequence, used to trap endogenous microRNA, respectively. We demonstrated that inhibiting miR-223 function significantly reduced neointimal hyperplasia by almost half in carotids. Thus down-regulating miR-223 could be a potential therapeutic approach to prevent restenosis after angioplasty. We also correlated miR-126 and miR-223 expression with clinical outcomes in a large cohort of CKD patients, in collaboration with the University Hospital of Ghent (Belgium) and Ambroise Paré Hospital, France. We evaluated both miRNA’s link with all-cause mortality and cardiovascular and renal events over a 6-year follow-up period. The serum levels of miR-126 and miR-223 were decreased as CKD stage advanced, and patients with higher levels of miR-126 and miR-223 had a higher survival rate. Similar results were observed for cardiovascular and renal events. In conclusion, CKD is associated with a decrease in circulating miR-126 and miR-223 levels in CKD patients. We will also present links between several uremic toxin concentrations and miRNA concentration in the patients of this cohort. Finally, anemia is a common feature of CKD that is associated with cardiovascular disease and poor clinical outcomes. A mixture of uremic toxins accumulates in the blood of CKD patients during the course of the disease, and there is good evidence that they modulate erythropoiesis, explaining at least partly anemia. The exact molecular mechanisms implicated are however poorly understood, although recent progresses have been made to identify key components in the CKD process. We will present results on the effect of uremic toxins on erythropoiesis, having an impact on cell metabolism during this process. Taken together, our findings could be of interest to both researchers and clinicians working in the field since they might shed new light on the molecular mechanisms involved in the CKD process. MicroRNAs implicated in Chronic Kidney Disease Pr. Laurent Metzinger, UR-UPJV 4666 HEMATIM, CURS, Université de Picardie Jules Verne, CHU Amiens Sud, Avenue René Laënnec, Salouel, F-80054, Amiens, France. Tel: (+33) 22 82 53 56, Email: [email protected]


2020 ◽  
Vol 8 (6) ◽  
pp. 907 ◽  
Author(s):  
Ji Eun Kim ◽  
Hyo-Eun Kim ◽  
Ji In Park ◽  
Hyunjeong Cho ◽  
Min-Jung Kwak ◽  
...  

Chronic kidney disease (CKD)-associated uremia aggravates—and is aggravated by—gut dysbiosis. However, the correlation between CKD severity and gut microbiota and/or their uremic metabolites is unclear. We enrolled 103 CKD patients with stage 1 to 5 and 46 healthy controls. We analyzed patients’ gut microbiota by MiSeq system and measured the serum concentrations of four uremic metabolites (p-cresyl sulfate, indoxyl sulfate, p-cresyl glucuronide, and trimethylamine N-oxide) by liquid chromatography–tandem mass spectrometry. Serum concentrations of the uremic metabolites increased with kidney function deterioration. Gut microbial diversity did not differ among the examined patient and control groups. In moderate or higher stage CKD groups, Oscillibacter showed positive interactions with other microbiota, and the proportions of Oscillibacter were positively correlated with those of the uremic metabolites. The gut microbiota, particularly Oscillibacter, was predicted to contribute to pyruvate metabolism which increased with CKD progression. Relative abundance of Oscillibacter was significantly associated with both serum uremic metabolite levels and kidney function. Predicted functional analysis suggested that kidney-function-associated changes in the contribution of Oscillibacter to pyruvate metabolism in CKD may greatly affect the gut environment according to kidney function, resulting in dysbiosis concomitant with uremic toxin production. The gut microbiota could be associated with uremia progression in CKD. These results may provide basis for further metagenomics analysis of kidney diseases.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Hardik Ghelani ◽  
Valentina Razmovski-Naumovski ◽  
Dennis Chang ◽  
Srinivas Nammi

Abstract Background Chronic kidney disease (CKD), including nephrotic syndrome, is a major cause of cardiovascular morbidity and mortality. The literature indicates that CKD is associated with profound lipid disorders due to the dysregulation of lipoprotein metabolism which progresses kidney disease. The objective of this study is to evaluate the protective effects of curcumin on dyslipidaemia associated with adenine-induced chronic kidney disease in rats. Methods Male SD rats (n = 29) were divided into 5 groups for 24 days: normal control (n = 5, normal diet), CKD control (n = 6, 0.75% w/w adenine-supplemented diet), CUR 50 (n = 6, 50 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet), CUR 100 (n = 6, 100 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet), and CUR 150 (n = 6, 150 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet). The serum and tissue lipid profile, as well as the kidney function test, were measured using commercial diagnostic kits. Results The marked rise in total cholesterol, low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL) cholesterol, triglycerides and free fatty acids in serum, as well as hepatic cholesterol, triglyceride and free fatty acids of CKD control rats were significantly protected by curcumin co-treatment (at the dose of 50, 100 and 150 mg/kg). Furthermore, curcumin significantly increased the serum high-density lipoprotein (HDL) cholesterol compared to the CKD control rats but did not attenuate the CKD-induced weight retardation. Mathematical computational analysis revealed that curcumin significantly reduced indicators for the risk of atherosclerotic lesions (atherogenic index) and coronary atherogenesis (coronary risk index). In addition, curcumin improved kidney function as shown by the reduction in proteinuria and improvement in creatinine clearance. Conclusion The results provide new scientific evidence for the use of curcumin in CKD-associated dyslipidaemia and substantiates the traditional use of curcumin in preventing kidney damage.


2021 ◽  
Vol 11 (11) ◽  
pp. 1118
Author(s):  
Tessa Gryp ◽  
Karoline Faust ◽  
Wim Van Biesen ◽  
Geert R. B. Huys ◽  
Francis Verbeke ◽  
...  

Chronic kidney disease (CKD) is characterized by the accumulation of uremic toxins which exert deleterious effects on various organ systems. Several of these uremic toxins originate from the bacterial metabolization of aromatic amino acids in the colon. This study assessed whether the gut microbial composition varies among patients in different stages of CKD. Uremic metabolites were quantified by UPLC/fluorescence detection and microbial profiling by 16S rRNA amplicon sequencing. Gut microbial profiles of CKD patients were compared among stages 1–2, stage 3 and stages 4–5. Although a substantial inter-individual difference in abundance of the top 15 genera was observed, no significant difference was observed between groups. Bristol stool scale (BSS) correlated negatively with p-cresyl sulfate and hippuric acid levels, irrespective of the intake of laxatives. Butyricicoccus, a genus with butyrate-generating properties, was decreased in abundance in advanced stages of CKD compared to the earlier stages (p = 0.043). In conclusion, in this cross-sectional study no gradual differences in the gut microbial profile over the different stages of CKD were observed. However, the decrease in the abundance of Butyricicoccus genus with loss of kidney function stresses the need for more in-depth functional exploration of the gut microbiome in CKD patients not on dialysis.


2020 ◽  
Vol 8 (12) ◽  
pp. 1862
Author(s):  
Ryota Ikee ◽  
Naomi Sasaki ◽  
Takuji Yasuda ◽  
Sawako Fukazawa

Gut dysbiosis has been implicated in the progression of chronic kidney disease (CKD). Alterations in the gut environment induced by uremic toxins, the dietary restriction of fiber-rich foods, and multiple drugs may be involved in CKD-related gut dysbiosis. CKD-related gut dysbiosis is considered to be characterized by the expansion of bacterial species producing precursors of harmful uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, and the contraction of species generating beneficial short-chain fatty acids, such as butyrate. Gut-derived uremic toxins cause oxidative stress and pro-inflammatory responses, whereas butyrate exerts anti-inflammatory effects and contributes to gut epithelial integrity. Gut dysbiosis is associated with the disruption of the gut epithelial barrier, which leads to the translocation of endotoxins. Research on CKD-related gut dysbiosis has mainly focused on chronic inflammation and consequent cardiovascular and renal damage. The pathogenic relationship between CKD-related gut dysbiosis and constipation has not yet been investigated in detail. Constipation is highly prevalent in CKD and affects the quality of life of these patients. Under the pathophysiological state of gut dysbiosis, altered bacterial fermentation products may play a prominent role in intestinal dysmotility. In this review, we outline the factors contributing to constipation, such as the gut microbiota and bacterial fermentation; introduce recent findings on the pathogenic link between CKD-related gut dysbiosis and constipation; and discuss potential interventions. This pathogenic link needs to be elucidated in more detail and may contribute to the development of novel treatment options not only for constipation, but also cardiovascular disease in CKD.


2016 ◽  
Vol 310 (9) ◽  
pp. F857-F871 ◽  
Author(s):  
Dorothy A. Kieffer ◽  
Brian D. Piccolo ◽  
Nosratola D. Vaziri ◽  
Shuman Liu ◽  
Wei L. Lau ◽  
...  

Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xenometabolites). The fermentable dietary fiber high amylose maize-resistant starch type 2 (HAMRS2) has been shown to alter the gut milieu and in CKD rat models leads to markedly improved kidney function. The aim of the present study was to identify specific cecal bacteria and cecal, blood, and urinary metabolites that associate with changes in kidney function to identify potential mechanisms involved with CKD amelioration in response to dietary resistant starch. Male Sprague-Dawley rats with adenine-induced CKD were fed a semipurified low-fiber diet or a high-fiber diet [59% (wt/wt) HAMRS2] for 3 wk ( n = 9 rats/group). The cecal microbiome was characterized, and cecal contents, serum, and urine metabolites were analyzed. HAMRS2-fed rats displayed decreased cecal pH, decreased microbial diversity, and an increased Bacteroidetes-to-Firmicutes ratio. Several uremic retention solutes were altered in the cecal contents, serum, and urine, many of which had strong correlations with specific gut bacteria abundances, i.e., serum and urine indoxyl sulfate were reduced by 36% and 66%, respectively, in HAMRS2-fed rats and urine p-cresol was reduced by 47% in HAMRS2-fed rats. Outcomes from this study were coincident with improvements in kidney function indexes and amelioration of CKD outcomes previously reported for these rats, suggesting an important role for microbial-derived factors and gut microbe metabolism in regulating host kidney function.


Sign in / Sign up

Export Citation Format

Share Document