scholarly journals Host BAG3 Is Degraded by Pseudorabies Virus pUL56 C-Terminal 181L-185L and Plays a Negative Regulation Role during Viral Lytic Infection

2020 ◽  
Vol 21 (9) ◽  
pp. 3148
Author(s):  
Chuang Lyu ◽  
Wei-Dong Li ◽  
Shu-Wen Wang ◽  
Jin-Mei Peng ◽  
Yong-Bo Yang ◽  
...  

Bcl2-associated athanogene (BAG) 3, which is a chaperone-mediated selective autophagy protein, plays a pivotal role in modulating the life cycle of a wide variety of viruses. Both positive and negative modulations of viruses by BAG3 were reported. However, the effects of BAG3 on pseudorabies virus (PRV) remain unknown. To investigate whether BAG3 could modulate the PRV life cycle during a lytic infection, we first identified PRV protein UL56 (pUL56) as a novel BAG3 interactor by co-immunoprecipitation and co-localization analyses. The overexpression of pUL56 induced a significant degradation of BAG3 at protein level via the lysosome pathway. The C-terminal mutations of 181L/A, 185L/A, or 181L/A-185L/A in pUL56 resulted in a deficiency in pUL56-induced BAG3 degradation. In addition, the pUL56 C-terminal mutants that lost Golgi retention abrogated pUL56-induced BAG3 degradation, which indicates a Golgi retention-dependent manner. Strikingly, BAG3 was not observed to be degraded in either wild-type or UL56-deleted PRV infected cells as compared to mock infected ones, whereas the additional two adjacent BAG3 cleaved products were found in the infected cells in a species-specific manner. Overexpression of BAG3 significantly suppressed PRV proliferation, while knockdown of BAG3 resulted in increased viral yields in HEK293T cells. Thus, these data indicated a negative regulation role of BAG3 during PRV lytic infection. Collectively, our findings revealed a novel molecular mechanism on host protein degradation induced by PRV pUL56. Moreover, we identified BAG3 as a host restricted protein during PRV lytic infection in cells.

1998 ◽  
Vol 72 (6) ◽  
pp. 4571-4579 ◽  
Author(s):  
R. S. Tirabassi ◽  
L. W. Enquist

ABSTRACT Several groups have reported that certain herpesvirus envelope proteins do not remain on the surface of cells that express them but rather are internalized by endocytosis in a recycling process. The biological function of membrane protein endocytosis in the virus life cycle remains a matter of speculation and debate. In this report, we demonstrate that some, but not all, membrane proteins encoded by the alphaherpesvirus pseudorabies virus (PRV) are internalized after reaching the plasma membrane. Glycoproteins gE and gB are internalized from the plasma membrane of cells, while gI and gC are not internalized efficiently. We show for gE that the cytoplasmic domain of the protein is required for endocytosis. While the gI protein is incapable of endocytosis on its own, it can be internalized when complexed with gE. We demonstrate that endocytosis of the gE-gI complex and gB occurs early after infection of tissue culture cells but that this process stops completely after 6 h of infection, a time that correlates with significant shutoff of host protein synthesis. We also show that gE protein internalized at 4 h postinfection is not present in virions formed at a later time. We discuss the differences in PRV gE and gI endocytosis compared to that of the varicella-zoster virus homologs and the possible roles of glycoprotein endocytosis in the virus life cycle.


2021 ◽  
Vol 22 (9) ◽  
pp. 4438
Author(s):  
Jessica Proulx ◽  
Kathleen Borgmann ◽  
In-Woo Park

The ubiquitin (Ub) proteasome system (UPS) plays a pivotal role in regulation of numerous cellular processes, including innate and adaptive immune responses that are essential for restriction of the virus life cycle in the infected cells. Deubiquitination by the deubiquitinating enzyme, deubiquitinase (DUB), is a reversible molecular process to remove Ub or Ub chains from the target proteins. Deubiquitination is an integral strategy within the UPS in regulating survival and proliferation of the infecting virus and the virus-invaded cells. Many viruses in the infected cells are reported to encode viral DUB, and these vial DUBs actively disrupt cellular Ub-dependent processes to suppress host antiviral immune response, enhancing virus replication and thus proliferation. This review surveys the types of DUBs encoded by different viruses and their molecular processes for how the infecting viruses take advantage of the DUB system to evade the host immune response and expedite their replication.


2021 ◽  
Vol 9 (8) ◽  
pp. 1621
Author(s):  
Adeline Ribeiro E Silva ◽  
Alix Sausset ◽  
Françoise I. Bussière ◽  
Fabrice Laurent ◽  
Sonia Lacroix-Lamandé ◽  
...  

Kinome from apicomplexan parasites is composed of eukaryotic protein kinases and Apicomplexa specific kinases, such as rhoptry kinases (ROPK). Ropk is a gene family that is known to play important roles in host–pathogen interaction in Toxoplasma gondii but is still poorly described in Eimeria tenella, the parasite responsible for avian coccidiosis worldwide. In the E. tenella genome, 28 ropk genes are predicted and could be classified as active (n = 7), inactive (incomplete catalytic triad, n = 12), and non-canonical kinases (active kinase with a modified catalytic triad, n = 9). We characterized the ropk gene expression patterns by real-time quantitative RT-PCR, normalized by parasite housekeeping genes, during the E. tenella life-cycle. Analyzed stages were: non-sporulated oocysts, sporulated oocysts, extracellular and intracellular sporozoites, immature and mature schizonts I, first- and second-generation merozoites, and gametes. Transcription of all those predicted ropk was confirmed. The mean intensity of transcription was higher in extracellular stages and 7–9 ropk were specifically transcribed in merozoites in comparison with sporozoites. Transcriptional profiles of intracellular stages were closely related to each other, suggesting a probable common role of ROPKs in hijacking signaling pathways and immune responses in infected cells. These results provide a solid basis for future functional analysis of ROPK from E. tenella.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Nicole F. Robichaud ◽  
Jeanette Sassine ◽  
Margaret J. Beaton ◽  
Vett K. Lloyd

Daphnids are fresh water microcrustaceans, many of which follow a cyclically parthenogenetic life cycle. Daphnia species have been well studied in the context of ecology, toxicology, and evolution, but their epigenetics remain largely unexamined even though sex determination, the production of sexual females and males, and distinct adult morphological phenotypes, are determined epigenetically. Here, we report on the characterization of histone modifications in Daphnia. We show that a number of histone H3 and H4 modifications are present in Daphnia embryos and histone H3 dimethylated at lysine 4 (H3K4me2) is present nonuniformly in the nucleus in a cell cycle-dependent manner. In addition, this histone modification, while present in blastula and gastrula cells as well as the somatic cells of adults, is absent or reduced in oocytes and nurse cells. Thus, the epigenetic repertoire of Daphnia includes modified histones and as these epigenetic forces act on a genetically homogeneous clonal population Daphnia offers an exceptional tool to investigate the mechanism and role of epigenetics in the life cycle and development of an ecologically important species.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 916
Author(s):  
Robert J. J. Jansens ◽  
Sandra Marmiroli ◽  
Herman W. Favoreel

The US3 serine/threonine protein kinase is conserved among the alphaherpesvirus family and represents an important virulence factor. US3 plays a role in viral nuclear egress, induces dramatic alterations of the cytoskeleton, represses apoptosis, enhances gene expression and modulates the immune response. Although several substrates of US3 have been identified, an unbiased screen to identify US3 phosphorylation targets has not yet been described. Here, we perform a shotgun and phosphoproteomics analysis of cells expressing the US3 protein of pseudorabies virus (PRV) to identify US3 phosphorylation targets in an unbiased way. We identified several cellular proteins that are differentially phosphorylated upon US3 expression and validated the phosphorylation of lamin A/C at serine 404, both in US3-transfected and PRV-infected cells. These results provide new insights into the signaling network of the US3 protein kinase and may serve as a basis for future research into the role of the US3 protein in the viral replication cycle.


2006 ◽  
Vol 80 (2) ◽  
pp. 769-784 ◽  
Author(s):  
Jennifer A. Schwartz ◽  
Elizabeth E. Brittle ◽  
Ashley E. Reynolds ◽  
Lynn W. Enquist ◽  
Saul J. Silverstein

ABSTRACT The pseudorabies virus (PRV) UL54 homologs are important multifunctional proteins with roles in shutoff of host protein synthesis, transactivation of virus and cellular genes, and regulation of splicing and translation. Here we describe the first genetic characterization of UL54. We constructed UL54 null mutations in a PRV bacterial artificial chromosome using sugar suicide and λRed allele exchange systems. Surprisingly, UL54 is dispensable for growth in tissue culture but exhibits a small-plaque phenotype that can be complemented in trans by both the herpes simplex virus type 1 ICP27 and varicella-zoster virus open reading frame 4 proteins. Deletion of UL54 in the virus vJSΔ54 had no effect on the ability of the virus to shut off host cell protein synthesis but did affect virus gene expression. The glycoprotein gC accumulated to lower levels in cells infected with vJSΔ54 compared to those infected with wild-type virus, while gK levels were undetectable. Other late gene products, gB, gE, and Us9, accumulated to higher levels than those seen in cells infected with wild-type virus in a multiplicity-dependent manner. DNA replication is also reduced in cells infected with vJSΔ54. UL54 appears to regulate UL53 and UL52 at the transcriptional level as their respective RNAs are decreased in cells infected with vJSΔ54. Interestingly, vJSΔ54 is highly attenuated in a mouse model of PRV infection. Animals infected with vJSΔ54 survive twice as long as animals infected with wild-type virus, and this results in delayed accumulation of virus-specific antigens in skin, dorsal root ganglia, and spinal cord tissues.


2006 ◽  
Vol 87 (5) ◽  
pp. 1109-1112 ◽  
Author(s):  
Béatrice Riteau ◽  
Christiane de Vaureix ◽  
François Lefèvre

Extracellular proteases that are expressed in primary and secondary foci of viral infection are potentially important mediators of infectious inflammatory processes. For some viruses, such as influenza virus and rotaviruses, proteases such as trypsin enhance infectivity by a direct proteolytic effect on some virion proteins. By using an in vitro model of herpesvirus infection, the possibility that proteases modulate the viral cycle through signalling delivered to the infected cell was investigated. It is reported that exposure of pseudorabies virus-infected cells to trypsin increased virus production. Moreover, this treatment induced synergistic and sustained activation of the extracellular signal-regulated kinase (ERK) 1/2 signalling pathway, which appeared to be necessary for this increased viral production. These results suggest that herpesviruses could take advantage of the inflammatory context and particularly of the presence of proteases to increase their replication. Thus, these data point to a potentially important role of extracellular proteases in herpesvirus infection.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Ambra Sarracino ◽  
Lavina Gharu ◽  
Anna Kula ◽  
Alexander O. Pasternak ◽  
Veronique Avettand-Fenoel ◽  
...  

ABSTRACTPosttranscriptional regulation of HIV-1 replication is finely controlled by viral and host factors. Among the former, Rev controls the export of partially spliced and unspliced viral RNAs from the nucleus and their translation in the cytoplasm or incorporation into new virions as genomic viral RNA. To investigate the functional role of the Rev cofactor MATR3 in the context of HIV infection, we modulated its expression in Jurkat cells and primary peripheral blood lymphocytes (PBLs). We confirmed that MATR3 is a positive regulator of HIV-1 acting at a posttranscriptional level. By applying the same approach to J-lat cells, a well-established model for the study of HIV-1 latency, we observed that MATR3 depletion did not affect transcriptional reactivation of the integrated provirus, but caused a reduction of Gag production. Following these observations, we hypothesized that MATR3 could be involved in the establishment of HIV-1 posttranscriptional latency. Indeed, mechanisms acting at the posttranscriptional level have been greatly overlooked in favor of transcriptional pathways. MATR3 was almost undetectable in resting PBLs, but could be promptly upregulated upon cellular stimulation with PHA. However, HIV latency-reversing agents were poor inducers of MATR3 levels, providing a rationale for their inability to fully reactivate the virus. These data have been confirmedex vivoin cells derived from patients under suppressive ART. Finally, in the context of MATR3-depleted J-lat cells, impaired reactivation by SAHA could be fully rescued by MATR3 reconstitution, demonstrating a direct role of MATR3 in the posttranscriptional regulation of HIV-1 latency.IMPORTANCEThe life cycle of HIV-1 requires integration of a DNA copy into the genome of the host cell. Transcription of the viral genes generates RNAs that are exported to the cytoplasm with the contribution of viral and cellular factors to get translated or incorporated in the newly synthesized virions. It has been observed that highly effective antiretroviral therapy, which is able to reduce circulating virus to undetectable levels, cannot fully eradicate the virus from cellular reservoirs that harbor a transcriptionally latent provirus. Thus, persistence of latently infected cells is the major barrier to a cure for HIV-1 infection. In order to purge these reservoirs of latently infected cells, it has been proposed to activate transcription to stimulate the virus to complete its life cycle. This strategy is believed to unmask these reservoirs, making them vulnerable to the immune system. However, limited successes of this approach may indicate additional posttranscriptional restrictions that need to be overcome for full virus reactivation. In this work we identify the cellular protein MATR3 as an essential cofactor of viral RNA processing. Reactivation of HIV-1 transcriptionper seis not sufficient to allow completion of a full life cycle of the virus if MATR3 is depleted. Furthermore, MATR3 is poorly expressed in quiescent CD4+T lymphocytes that are the major reservoir of latent HIV-1. Cells derived from aviremic HIV-1 patients under antiretroviral therapy didn’t express MATR3, and most importantly, latency-reversing agents proposed for the rescue of latent provirus were ineffective for MATR3 upregulation. To conclude, our work identifies a cellular factor required for full HIV-1 reactivation and points to the revision of the current strategies for purging viral reservoirs that focus only on transcription.


2016 ◽  
Vol 90 (17) ◽  
pp. 7657-7666 ◽  
Author(s):  
Zhigang Zhang ◽  
Wuguo Chen ◽  
Marcia K. Sanders ◽  
Kevin F. Brulois ◽  
Dirk P. Dittmer ◽  
...  

ABSTRACTThe K1 gene product of Kaposi's sarcoma-associated herpesvirus (KSHV) is encoded by the first open reading frame (ORF) of the viral genome. To investigate the role of the K1 gene during the KSHV life cycle, we constructed a set of recombinant viruses that contained either wild-type (WT) K1, a deleted K1 ORF (KSHVΔK1), stop codons within the K1 ORF (KSHV-K15×STOP), or a revertant K1 virus (KSHV-K1REV). We report that the recombinant viruses KSHVΔK1 and KSHV-K15×STOPdisplayed significantly reduced lytic replication compared to WT KSHV and KSHV-K1REVupon reactivation from latency. Additionally, cells infected with the recombinant viruses KSHVΔK1 and KSHV-K15×STOPalso yielded smaller amounts of infectious progeny upon reactivation than did WT KSHV- and KSHV-K1REV-infected cells. Upon reactivation from latency, WT KSHV- and KSHV-K1REV-infected cells displayed activated Akt kinase, as evidenced by its phosphorylation, while cells infected with viruses deleted for K1 showed reduced phosphorylation and activation of Akt kinase. Overall, our results suggest that K1 plays an important role during the KSHV life cycle.IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of three human malignancies, and KSHV K1 is a signaling protein that has been shown to be involved in cellular transformation and to activate the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR pathway. In order to investigate the role of the K1 protein in the life cycle of KSHV, we constructed recombinant viruses that were deficient for K1. We found that K1 deletion viruses displayed reduced lytic replication compared to the WT virus and also yielded smaller numbers of infectious progeny. We report that K1 plays an important role in the life cycle of KSHV.


2017 ◽  
Vol 91 (10) ◽  
Author(s):  
Dipon Das ◽  
Nathan Smith ◽  
Xu Wang ◽  
Iain M. Morgan

ABSTRACT Human papillomaviruses (HPV) replicate their genomes in differentiating epithelium using the viral proteins E1 and E2 in association with host proteins. While the roles of E1 and E2 in this process are understood, the host factors involved and how they interact with and regulate E1-E2 are not. Our previous work identified the host replication and repair factor TopBP1 as an E2 partner protein essential for optimal E1-E2 replication and for the viral life cycle. The role of TopBP1 in host DNA replication is regulated by the class III deacetylase SIRT1; activation of the DNA damage response prevents SIRT1 deacetylation of TopBP1, resulting in a switch from DNA replication to repair functions for this protein and cell cycle arrest. Others have demonstrated an essential role for SIRT1 in regulation of the HPV31 life cycle; here, we report that SIRT1 can directly regulate HPV16 E1-E2-mediated DNA replication. SIRT1 is part of the E1-E2 DNA replication complex and is recruited to the viral origin of replication in an E1-E2-dependent manner. CRISPR/Cas9 was used to generate C33a clones with undetectable SIRT1 expression and lack of SIRT1 elevated E1-E2 DNA replication, in part due to increased acetylation and stabilization of the E2 protein in the absence of SIRT1. The results demonstrate that SIRT1 is a member of, and can regulate, the HPV16 replication complex. We discuss the potential role of this protein in the viral life cycle. IMPORTANCE HPV are causative agents in a number of human diseases, and currently only the symptoms of these diseases are treated. To identify novel therapeutic approaches for combating these diseases, the viral life cycle must be understood in more detail. This report demonstrates that a cellular enzyme, SIRT1, is part of the HPV16 DNA replication complex and is brought to the viral genome by the viral proteins E1 and E2. Using gene editing technology (CRISPR/Cas9), the SIRT1 gene was removed from cervical cancer cells. The consequence of this was that viral replication was elevated, probably due to a stabilization of the viral replication factor E2. The overall results demonstrate that an enzyme with known inhibitors, SIRT1, plays an important role in controlling how HPV16 makes copies of itself. Targeting this enzyme could be a new therapeutic approach for combating HPV spread and disease.


Sign in / Sign up

Export Citation Format

Share Document