scholarly journals Gut Microbiota Metabolism and Interaction with Food Components

2020 ◽  
Vol 21 (10) ◽  
pp. 3688 ◽  
Author(s):  
Pamela Vernocchi ◽  
Federica Del Chierico ◽  
Lorenza Putignani

The human gut contains trillions of microbes that play a central role in host biology, including the provision of key nutrients from the diet. Food is a major source of precursors for metabolite production; in fact, diet modulates the gut microbiota (GM) as the nutrients, derived from dietary intake, reach the GM, affecting both the ecosystem and microbial metabolic profile. GM metabolic ability has an impact on human nutritional status from childhood. However, there is a wide variability of dietary patterns that exist among individuals. The study of interactions with the host via GM metabolic pathways is an interesting field of research in medicine, as microbiota members produce myriads of molecules with many bioactive properties. Indeed, much evidence has demonstrated the importance of metabolites produced by the bacterial metabolism from foods at the gut level that dynamically participate in various biochemical mechanisms of a cell as a reaction to environmental stimuli. Hence, the GM modulate homeostasis at the gut level, and the alteration in their composition can concur in disease onset or progression, including immunological, inflammatory, and metabolic disorders, as well as cancer. Understanding the gut microbe–nutrient interactions will increase our knowledge of how diet affects host health and disease, thus enabling personalized therapeutics and nutrition.

2019 ◽  
Vol 36 (4) ◽  
pp. 593-625 ◽  
Author(s):  
Lauren J. Rajakovich ◽  
Emily P. Balskus

Metalloenzymes play central roles in metabolic functions of the human gut microbiota that are associated with host health and disease.


2022 ◽  
Vol 8 ◽  
Author(s):  
Shuangyue Li ◽  
Georgios Kararigas

There has been a recent, unprecedented interest in the role of gut microbiota in host health and disease. Technological advances have dramatically expanded our knowledge of the gut microbiome. Increasing evidence has indicated a strong link between gut microbiota and the development of cardiovascular diseases (CVD). In the present article, we discuss the contribution of gut microbiota in the development and progression of CVD. We further discuss how the gut microbiome may differ between the sexes and how it may be influenced by sex hormones. We put forward that regulation of microbial composition and function by sex might lead to sex-biased disease susceptibility, thereby offering a mechanistic insight into sex differences in CVD. A better understanding of this could identify novel targets, ultimately contributing to the development of innovative preventive, diagnostic and therapeutic strategies for men and women.


2021 ◽  
Vol 118 (6) ◽  
pp. e2016046118 ◽  
Author(s):  
Camille Simonet ◽  
Luke McNally

Through the secretion of “public goods” molecules, microbes cooperatively exploit their habitat. This is known as a major driver of the functioning of microbial communities, including in human disease. Understanding why microbial species cooperate is therefore crucial to achieve successful microbial community management, such as microbiome manipulation. A leading explanation is that of Hamilton’s inclusive-fitness framework. A cooperator can indirectly transmit its genes by helping the reproduction of an individual carrying similar genes. Therefore, all else being equal, as relatedness among individuals increases, so should cooperation. However, the predictive power of relatedness, particularly in microbes, is surrounded by controversy. Using phylogenetic comparative analyses across the full diversity of the human gut microbiota and six forms of cooperation, we find that relatedness is predictive of the cooperative gene content evolution in gut-microbe genomes. Hence, relatedness is predictive of cooperation over broad microbial taxonomic levels that encompass variation in other life-history and ecology details. This supports the generality of Hamilton’s central insights and the relevance of relatedness as a key parameter of interest to advance microbial predictive and engineering science.


2020 ◽  
Vol 295 (52) ◽  
pp. 18625-18637
Author(s):  
Cheng-Jie Duan ◽  
Arnaud Baslé ◽  
Marcelo Visona Liberato ◽  
Joseph Gray ◽  
Sergey A. Nepogodiev ◽  
...  

Pectins are a major dietary nutrient source for the human gut microbiota. The prominent gut microbe Bacteroides thetaiotaomicron was recently shown to encode the founding member (BT1017) of a new family of pectin methylesterases essential for the metabolism of the complex pectin rhamnogalacturonan-II (RG-II). However, biochemical and structural knowledge of this family is lacking. Here, we showed that BT1017 is critical for the metabolism of an RG-II–derived oligosaccharide ΔBT1017oligoB generated by a BT1017 deletion mutant (ΔBT1017) during growth on carbohydrate extract from apple juice. Structural analyses of ΔBT1017oligoB using a combination of enzymatic, mass spectrometric, and NMR approaches revealed that it is a bimethylated nonaoligosaccharide (GlcA-β1,4-(2-O-Me-Xyl-α1,3)-Fuc-α1,4-(GalA-β1,3)-Rha-α1,3-Api-β1,2-(Araf-α1,3)-(GalA-α1,4)-GalA) containing components of the RG-II backbone and its side chains. We showed that the catalytic module of BT1017 adopts an α/β-hydrolase fold, consisting of a central twisted 10-stranded β-sheet sandwiched by several α-helices. This constitutes a new fold for pectin methylesterases, which are predominantly right-handed β-helical proteins. Bioinformatic analyses revealed that the family is dominated by sequences from prominent genera of the human gut microbiota, including Bacteroides and Prevotella. Our re-sults not only highlight the critical role played by this family of enzymes in pectin metabolism but also provide new insights into the molecular basis of the adaptation of B. thetaiotaomicron to the human gut.


2016 ◽  
Vol 7 (9) ◽  
pp. 4048-4060 ◽  
Author(s):  
Giuseppina Mandalari ◽  
Simona Chessa ◽  
Carlo Bisignano ◽  
Luisa Chan ◽  
Arianna Carughi

Modulation of the human gut microbiota has proven to have beneficial effects on host health. Sun-dried raisins exhibited prebiotic potential.


2018 ◽  
Author(s):  
Evgenii I. Olekhnovich ◽  
Alexander I. Manolov ◽  
Nikita A. Prianichniikov ◽  
Andrei E. Samoilov ◽  
Maja V. Malakhova ◽  
...  

AbstractThe human gut microbiome plays an important role both in health and disease. The use of antibiotics can alter gut microbiota composition, which can cause complications of various kinds. Here we report a whole genome sequencing metagenomic study of the intestinal microbiota changes caused by Helicobacter pylori eradication therapy. We have found the decrease in taxonomic alpha-diversity due to the therapy. The changes observed were more extensive for patients with duodenal ulcer and female ones. As well across the patients under the therapy we have detected the shifts in the metabolic potential and resistome. Seven KEGG pathways associated with quorum sensing, genetic Information processing and environmental Information processing were increased, while metabolic pathways related with metabolism of cofactors and vitamins and glycan biosynthesis and metabolism decreased. Changes in the resistome profile have also been identified. We observed perturbations in intraspecies structures, which were higher in group of patients under the therapy than in control group of people without treatment. The Eubacterium rectale pangenome extracted from metagenomic data were changed. We also isolated and sequenced Enterococcus faecium strains from two patients before and after eradication therapy. After the therapy this bacterium increased as the antibiotic resistance in vitro, as well the number of ARGs to macrolides and tetracyclines and metagenomic relative abundance in comparison with strains before therapy. In summary, microbial community demonstrated shift to reduce metabolic potential and to increased mechanisms, which mediate more survival condition through intraspecies perturbations.ImportanceThe human gut microbiome plays an important role both in health and disease. The use of antibiotics can alter gut microbiota composition, which can cause complications of various kinds. H. pylori eradication therapy causes multiple shifts and alterations (including intraspecies changes) of the intestinal microbiota structure and leads to the accumulation of genes which determine resistance to macrolides. Since these changes are not the same for patients with various diseases, patients with duodenal ulcer may be further paid special attention for reducing side effects, such as antibiotic-induced dysbiosis. Also, study of antibiotic treatment in terms of its impact upon the human gut microbiota allows shedding light on of the complex processes that cause accumulation and spread of antibiotic resistance. An identification and understanding of these complicated processes may help to constrain antibiotic resistance spread, which is of great importance for human health care.


2021 ◽  
Author(s):  
Ana S Luis ◽  
Arnaud Basle ◽  
Dominic P Byrne ◽  
Gareth SA Wright ◽  
James London ◽  
...  

The vast microbial community that resides in the human colon, termed the human gut microbiota, performs important roles in maintaining host health. Sulfated host glycans comprise both a major nutrient source and important colonisation factors for this community. Carbohydrate sulfatases remove sulfate groups from glycans and are essential in many bacteria for the utilisation of sulfated host glycans. Additionally, carbohydrate sulfatases are also implicated in numerous host diseases, but remain some of the most understudied carbohydrate active enzymes to date, especially at the structural and molecular level. In this work, we analyse 7 carbohydrate sulfatases, spanning 4 subfamilies, from the human gut symbiont Bacteroides thetaiotaomicron, a major utiliser of sulfated host glycans, correlating structural and functional data with phylogenetic and environmental analyses. Together, these data begin to fill the knowledge gaps in how carbohydrate sulfatases orchestrate sulfated glycan metabolism within their environment.


mSphere ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Laura Markey ◽  
Antonia Pugliese ◽  
Theresa Tian ◽  
Farrah Roy ◽  
Kyongbum Lee ◽  
...  

ABSTRACT The mammalian gut microbiota is a complex community of microorganisms which typically exhibits remarkable stability. As the gut microbiota has been shown to affect many aspects of host health, the molecular keys to developing and maintaining a “healthy” gut microbiota are highly sought after. Yet, the qualities that define a microbiota as healthy remain elusive. We used the ability to resist change in response to antibiotic disruption, a quality we refer to as ecological resistance, as a metric for the health of the bacterial microbiota. Using a mouse model, we found that colonization with the commensal fungus Candida albicans decreased the ecological resistance of the bacterial microbiota in response to the antibiotic clindamycin such that increased microbiota disruption was observed in C. albicans-colonized mice compared to that in uncolonized mice. C. albicans colonization resulted in decreased alpha diversity and small changes in abundance of bacterial genera prior to clindamycin challenge. Strikingly, co-occurrence network analysis demonstrated that C. albicans colonization resulted in sweeping changes to the co-occurrence network structure, including decreased modularity and centrality and increased density. Thus, C. albicans colonization resulted in changes to the bacterial microbiota community and reduced its ecological resistance. IMPORTANCE Candida albicans is the most common fungal member of the human gut microbiota, yet its ability to interact with and affect the bacterial gut microbiota is largely uncharacterized. Previous reports showed limited changes in microbiota composition as defined by bacterial species abundance as a consequence of C. albicans colonization. We also observed only a few bacterial genera that were significantly altered in abundance in C. albicans-colonized mice; however, C. albicans colonization significantly changed the structure of the bacterial microbiota co-occurrence network. Additionally, C. albicans colonization changed the response of the bacterial microbiota ecosystem to a clinically relevant perturbation, challenge with the antibiotic clindamycin.


2021 ◽  
pp. 1-15
Author(s):  
Mohammad Tahseen Al Bataineh ◽  
Ayman Alzaatreh ◽  
Rima Hajjo ◽  
Bayan Hassan Banimfreg ◽  
Nihar Ranjan Dash

BACKGROUND: Age-related alterations in the composition and function of gut microbiota may influence human health and disease mechanisms. However, connections between compositional changes in gut bacterial and fungal communities, and their role in the aging process, remain poorly understood. OBJECTIVE: Compare the gut microbiota and mycobiota composition in different age groups and evaluate the functionality. METHODS: In this study, we performed 16S rRNA and ITS2 gene-based microbial profiling analysis and shotgun metagenomics using the NextSeq platform. RESULTS: We observed a shift in compositional changes of human gut microbiota with age. Older individuals revealed a significantly different gut microbiota profile compared to younger individuals. For example, gut microbiota composition of the older individuals showed increase in genera Bacteroides, Blautia, Ruminococcaceae, and Escherichia coli. Additionally, older individuals had significant reduction in fungi belonging to saccharomyces cerevisiae and candida albicans in comparison to their younger counterparts. Moreover, metagenomics functional profiling analysis using shotgun metagenomics sequencing data showed substantial differences in the enrichment of 48 pathways between the young and older age groups. Metabolic pathways such as amino acid biosynthesis, carbohydrate metabolism, cell structure biosynthesis and vitamin biosynthesis were declined in the older age group, in comparison with the younger individuals. CONCLUSIONS: The identified differences provide a new insight to enrich our understanding of age-related changes in gut microbiota, their metabolic capabilities, and potential impact on health and disease conditions.


Sign in / Sign up

Export Citation Format

Share Document