scholarly journals New Insight into Natural Extracellular Matrix: Genipin Cross-Linked Adipose-Derived Stem Cell Extracellular Matrix Gel for Tissue Engineering

2020 ◽  
Vol 21 (14) ◽  
pp. 4864 ◽  
Author(s):  
Batzaya Nyambat ◽  
Yankuba B. Manga ◽  
Chih-Hwa Chen ◽  
Uuganbayar Gankhuyag ◽  
Andi Pratomo WP ◽  
...  

The cell-derived extracellular matrix (ECM) is associated with a lower risk of pathogen transfer, and it possesses an ideal niche with growth factors and complex fibrillar proteins for cell attachment and growth. However, the cell-derived ECM is found to have poor biomechanical properties, and processing of cell-derived ECM into gels is scarcely studied. The gel provides platforms for three-dimensional cell culture, as well as injectable biomaterials, which could be delivered via a minimally invasive procedure. Thus, in this study, an adipose-derived stem cell (ADSC)-derived ECM gel was developed and cross-linked by genipin to address the aforementioned issue. The genipin cross-linked ADSC ECM gel was fabricated via several steps, including rabbit ADSC culture, cell sheets, decellularization, freeze–thawing, enzymatic digestion, neutralization of pH, and cross-linking. The physicochemical characteristics and cytocompatibility of the gel were evaluated. The results demonstrated that the genipin cross-linking could significantly enhance the mechanical properties of the ADSC ECM gel. Furthermore, the ADSC ECM was found to contain collagen, fibronectin, biglycan, and transforming growth factor (TGF)-β1, which could substantially maintain ADSC, skin, and ligament fibroblast cell proliferation. This cell-derived natural material could be suitable for future regenerative medicine and tissue engineering application.

2017 ◽  
Vol 89 (12) ◽  
pp. 1799-1808 ◽  
Author(s):  
Sakthivel Nagarajan ◽  
Céline Pochat-Bohatier ◽  
Sébastien Balme ◽  
Philippe Miele ◽  
S. Narayana Kalkura ◽  
...  

AbstractElectrospinning is a versatile technique to produce micron or nano sized fibers using synthetic or bio polymers. The unique structural characteristic of the electrospun mats (ESM) which mimics extracellular matrix (ECM) found influential in regenerative tissue engineering application. ESM with different morphologies or ESM functionalizing with specific growth factors creates a favorable microenvironment for the stem cell attachment, proliferation and differentiation. Fiber size, alignment and mechanical properties affect also the cell adhesion and gene expression. Hence, the effect of ESM physical properties on stem cell differentiation for neural, bone, cartilage, ocular and heart tissue regeneration will be reviewed and summarized. Electrospun fibers having high surface area to volume ratio present several advantages for drug/biomolecule delivery. Indeed, controlling the release of drugs/biomolecules is essential for sustained delivery application. Various possibilities to control the release of hydrophilic or hydrophobic drug from the ESM and different electrospinning methods such as emulsion electrospinning and coaxial electrospinning for drug/biomolecule loading are summarized in this review.


2019 ◽  
Vol 26 (34) ◽  
pp. 6321-6338 ◽  
Author(s):  
Shuaimeng Guan ◽  
Kun Zhang ◽  
Jingan Li

Stem cell transplantation is an advanced medical technology, which brings hope for the treatment of some difficult diseases in the clinic. Attributed to its self-renewal and differential ability, stem cell research has been pushed to the forefront of regenerative medicine and has become a hot topic in tissue engineering. The surrounding extracellular matrix has physical functions and important biological significance in regulating the life activities of cells, which may play crucial roles for in situ inducing specific differentiation of stem cells. In this review, we discuss the stem cells and their engineering application, and highlight the control of the fate of stem cells, we offer our perspectives on the various challenges and opportunities facing the use of the components of extracellular matrix for stem cell attachment, growth, proliferation, migration and differentiation.


2021 ◽  
Author(s):  
◽  
Sandi Grainne Dempsey

<p>Biomaterials derived from decellularised extracellular matrices have shown promise as tools in tissue regeneration and wound healing. Such materials display biocompatibility as well as inherent bioactivity, promoting constructive remodelling in healing tissues. In this study, the bioactivity of ovine forestomach matrix (a decellularised extracellular matrix biomaterial) is assessed based on its ability to affect the proliferation and migration of wound healing cells.  This material supported cell attachment and proliferation, but did not allow cell infiltration in vitro. Enzymatic digestion of the material rendered soluble components that were able to induce proliferation and migration of some cell types. Cell-mediated processing of the material generated a protein or proteins with chemotactic activity for mesenchymal stem cells in vitro. Mass spectrometry analysis indicated the bioactive component consisted of the proteoglycan decorin, or fragments thereof. Decorin has not previously been shown to induce mesenchymal stem cell motility, and these findings may add to what is known about decorin and its role in constructive remodelling. Furthermore, this cell-mediated approach for ECM breakdown could lead to the discovery of other bioactive peptides involved in ECM remodelling and wound healing.</p>


2018 ◽  
Vol 6 (6) ◽  
pp. 979-990 ◽  
Author(s):  
Batzaya Nyambat ◽  
Chih-Hwa Chen ◽  
Pei-Chun Wong ◽  
Chih-Wei Chiang ◽  
Mantosh Kumar Satapathy ◽  
...  

3D Bioscaffold with relative high mechanical property was developed using rabbit ADSCs.


Sign in / Sign up

Export Citation Format

Share Document